233 resultados para North, Dudley, Sir, 1641-1691.
Resumo:
Rising sea surface temperatures in the North Sea have had consequential effects on not only indigenous plankton species, but also on the possibility of successful colonisation of the area by invasive plankton species. Previous studies have noted the introduction and integration into the plankton community of various phytoplankton species, but establishment of zooplankton organisms in the North Sea is less well-documented. Examining continuous plankton recorder (CPR) survey data and zooplankton results from the Helgoland Roads study, the autumn of 1999 witnessed the occurrence of the marine cladoceran Penilia avirostris in large numbers in the North Sea. The rapid appearance of the species corresponded with exceptionally warm sea surface temperatures (SSTs). Since 1999, the species has become a regular feature of the autumnal zooplankton community of the North Sea. In 2002 and 2003, the species occurred in greater abundance than recorded before. It is suggested that increased autumn SSTs have proved favourable to P. avirostris, with warmer conditions contributing to the success of the species’ resting eggs and aiding colonisation.
Resumo:
Monitoring of Phaeocystis since 1948 during the Continuous Plankton Recorder survey indicates that over the last 5.5 decades the distribution of its colonies in the North Atlantic Ocean was not restricted to neritic waters: occurrence was also recorded in the open Atlantic regions sampled, most frequently in the spring. Apparently, environmental conditions in open ocean waters, also those far oVshore, are suitable for complete lifecycle development of colonies (the only stage recorded in the survey). In the North Sea the frequency of occurrence was also highest in spring. Its southeastern part was the Phaeocystis abundance hotspot of the whole area covered by the survey. Frequency was especially high before the 1960s and after the 1980s, i.e., in the periods when anthropogenic nutrient enrichment was relatively low. Changes in eutrophication have obviously not been a major cause of long-term Phaeocystis variation in the southeastern North Sea, where total phytoplankton biomass was related signiWcantly to river discharge. Evidence is presented for the suggestion that Phaeocystis abundance in the southern North Sea is to a large extent determined by the amount of Atlantic Ocean water Xushed in through the Dover Strait. Since Phaeocystis plays a key role in element Xuxes relevant to climate the results presented here have implications for biogeochemical models of cycling of carbon and sulphur. Sea-to-air exchange of CO2 and dimethyl sulphide (DMS) has been calculated on the basis of measurements during single-year cruises. The considerable annual variation in phytoplankton and in its Phaeocystis component reported here does not warrant extrapolation of such figures.
Resumo:
Global climate change is expected to modify the spatial distribution of marine organisms. However, projections of future changes should be based on robust information on the ecological niche of species. This paper presents a macroecological study of the environmental tolerance and ecological niche (sensu Hutchinson 1957, i.e. the field of tolerance of a species to the principal factors of its environment) of Calanus finmarchicus and C. helgolandicus in the North Atlantic Ocean and adjacent seas. Biological data were collected by the Continuous Plankton Recorder (CPR) Survey, which samples plankton in the North Atlantic and adjacent seas at a standard depth of 7 m. Eleven parameters were chosen including bathymetry, temperature, salinity, nutrients, mixed-layer depth and an index of turbulence compiled from wind data and chlorophyll a concentrations (used herein as an index of available food). The environmental window and the optimum level were determined for both species and for each abiotic factor and chlorophyll concentration. The most important parameters that influenced abundance and spatial distribution were temperature and its correlates such as oxygen and nutrients. Bathymetry and other water-column-related parameters also played an important role. The ecological niche of C. finmarchicus was larger than that of C. helgolandicus and both niches were significantly separated. Our results have important implications in the context of global climate change. As temperature (and to some extent stratification) is predicted to continue to rise in the North Atlantic sector, changes in the spatial distribution of these 2 Calanus species can be expected. Application of this approach to the 1980s North Sea regime shift provides evidence that changes in sea temperature alone could have triggered the substantial and rapid changes identified in the dynamic regimes of these ecosystems. C. finmarchicus appears to be a good indicator of the Atlantic Polar Biome (mainly the Atlantic Subarctic and Arctic provinces) while C. helgolandicus is an indicator of more temperate waters (Atlantic Westerly Winds Biome) in regions characterised by more pronounced spatial changes in bathymetry.
Resumo:
ABSTRACT: At a large North Sea pockmark, with active methane seeps, surface sediments were found to have higher insoluble sulphide concentrations than sedlments from the surrounding area. The fauna of the pockmark was characterized by 2 species which have not pi-evlously been reported from the Fladen Ground in the northern North Sea. These species were a b~valve, Thyasira sarsi (which is known to contain endosymbiotic sulphur-oxidising bacteria) and a mouthless and gutless nematode, Astomonerna sp., which also contains endosymbiotic bacteria The nematode was the dominant meiofauna species in the pockmark sediments. Both macro-lnfauna and total nematodes were in low abundance in samples taken from the base of the pockmark. Sediment samples from the pockmark contained numerous otoliths, implying that substantial winnowing of the sediment had taken place. This was supported by studies on the sulphide concentrations in the sediment which showed multiple layering of the sediments on the sides of the pockmark, suggesting displacement. The carbon isotope compositions (6I3c) of the tissues of benthic animals from in and around the pockmark were generally in the range -16 to -2O%, indicating that little methane-derived carbon was contributing to their nutrition. T sarsi had the most 13c-depleted tissues, -31.4 to -35.1 L, confirming the nutritional dependence of this species on chemoautotrophic bacteria that utilize reduced sulphur.
Spectral Response Of A Model Of The English-Channel And Southern North-Sea Heat Budgets 1961 To 1976
Resumo:
Charts are presented of the seasonal variations in the distribution of four phytoplankton and five zooplankton taxa in the North Atlantic and the North Sea. The main factors determining the seasonal variations appear to be the distribution of the main overwintering stocks, the current system and, in some instances, temperature control of the rate of population increase. Information is presented about the variation with latitude (over the range from 34° N to 65 ° N) of the seasonal regime of the plankton. On the assumption that there is a relationship between nutrient supply and vertical temperature stratification the main features of this variability can be interpreted. In the south (to about 43° N) nutrient limitation plus grazing appear to be dominant, resulting in a bimodal seasonal cycle of phytoplankton. North of about 60° N the system appears to be limited by the size of the phytoplankton stocks being grazed primarily by Calanus Finmarchicus and Euphausiacea. In an extensive zone, from about 44° N to 60° N, it would appear that the spring bloom of phytoplankton is under-exploited by grazing while in summer the zooplankton graze the daily production of the phytoplankton, the stocks of which are probably maintained by in situ nutrient regeneration. The implications, for at least this mid-latitude zone, that rates and fluxes of processes, as opposed to density dependent interactions between stocks, play a major role in the dynamics of the seasonal cycle is consistent with previously reported observations suggesting that physical environmental factors play a major role in determining year-to-year fluctuations in the abundance of the plankton.
Resumo:
Seasonal changes in the abundance, size and occurrence of furciliae of Euphausia krohni (Brandt), Nematoscelis megalops (G. O. Sars) and Thysanoessa gregaria G. O. Sars are described from samples taken at 10 m depth with the Continuous Plankton Recorder (CPR) over a period of 2 yr (January 1966 to December 1967) in the North Atlantic Ocean. E. krohni and T. gregaria were found to breed through most of the year but N. megalops bred only in spring and summer. Annual mean biomass was calculated directly from the data and production was estimated from published P:B ratios. The seasonal occurrences of E. brevis Hansen, E. hemigibba Hansen, E. mutica Hansen, E. tenera Hansen, Stylocheiron longicorne G. O. Sars, S. maximum Hansen, Thysanopoda acutifrons Holt and Tattershall and T. aequalis Hansen in the samples are described.
Resumo:
Geographical variations in the numbers, biomass and production of euphausiids and the contribution of common species to the total are described from samples taken during 1966 and 1967 in the North Atlantic Ocean and the North Sea by the Continuous Plankton Recorder at 10 m depth. Euphausiids were most abundant in the central and western North Atlantic Ocean and the Norwegian Sea. Thysanoessa longicaudata (Krøyer) was numerically dominant. Biomass was greatest in the Norwegian Sea and the north-eastern North Sea where Meganyctiphanes norvegica (M. Sars) accounted for 81 and 59%, respectively, of the total biomass. Production was highest off Nova Scotia and in Iberian coastal waters; the dominant species were T. raschi (M. Sars) in the former area and Nyctiphanes couchi (Bell) in the latter. The mean P:B ratios were correlated with temperature.
Resumo:
Individuals of Mytilus edulis L., collected from the Erme estuary (S.W. England) in 1978, were exposed to low concentrations (7 to 68 μg l-1) of the water-accommodated fraction (WAF) of North Sea crude oil. The pattern of accumulation of petroleum hydrocarbons in the body tissues was affected by the presence of algal food cells, the period of exposure, the hydrocarbon concentration in seawater, the type of body tissue and the nature of the hydrocarbon. Many physiological responses (e.g. rates of oxygen consumption, feeding, excretion, and scope for growth), cellular responses (e.g. lysosomal latency and digestive cell size) and biochemical responses (e.g. specific activities of several enzymes) were significantly altered by short-term (4 wk) and/or long-term (5 mo) exposure to WAF. Stress indices such as scope for growth and lysosomal latency were negatively correlated with tissue aromatic hydrocarbons.