85 resultados para pacific decadal oscillation
Resumo:
The Continuous Plankton Recorder survey has monitored plankton in the Northwest Atlantic at monthly intervals since 1962, with an interegnum between 1978 and 1990. In May 1999, large numbers of the Pacific diatom Neodenticula seminae were found in Continuous Plankton Recorder (CPR) samples in the Labrador Sea as the first record in the North Atlantic for more than 800 000 years. The event coincided with modifications in Arctic hydrography and circulation, increased flows of Pacific water into the Northwest Atlantic and in the previous year the exceptional occurrence of extensive ice-free water to the North of Canada. These observations indicate that N. seminae was carried in a pulse of Pacific water in 1998/early 1999 via the Canadian Arctic Archipelago and/or Fram Strait. The species occurred previously in the North Atlantic during the Pleistocene from similar to 1.2 to similar to 0.8 Ma as recorded in deep sea sediment cores. The reappearance of N. seminae in the North Atlantic is an indicator of the scale and speed of changes that are taking place in the Arctic and North Atlantic oceans as a consequence of regional climate warming. Because of the unusual nature of the event it appears that a threshold has been passed, marking a change in the circulation between the North Pacific and North Atlantic Oceans via the Arctic. Trans-Arctic migrations from the Pacific into the Atlantic are likely to occur increasingly over the next 100 years as Arctic ice continues to melt affecting Atlantic biodiversity and the biological pump with consequent feedbacks to the carbon cycle.
Resumo:
Nursery areas for juvenile fishes are often important for determining recruitment in marine populations by providing habitats that can maximize growth and thereby minimize mortality. Pacific ocean perch (POP, Sebastes alutus) have an extended juvenile period where they inhabit rocky nursery habitats. We examined POP nursery areas to link growth potential to recruitment. Juvenile POP were captured from nursery areas in 2004 and 2008, and estimated growth rates ranged from −0.19 to 0.60 g day−1 based on differences in size between June and August. Predicted growth rates from a bioenergetics model ranged from 0.05 to 0.49 g day−1 and were not significantly different than observed. Substrate preferences and the distribution of their preferred habitats were utilized to predict the extent of juvenile POP nursery habitat in the Gulf of Alaska. Based on densities of fish observed on underwater video transects and the spatial extent of nursery areas, we predicted 278 and 290 million juvenile POP were produced in 2004 and 2008. Growth potential for juvenile POP was reconstructed using the bioenergetics model, spring zooplankton bloom timing and duration and bottom water temperature for 1982–2008. When a single outlying recruitment year in 1986 was removed, growth potential experienced by juvenile POP in nursery areas was significantly correlated to the recruitment time-series from the stock assessment, explaining ∼30% of the variability. This research highlights the potential to predict recruitment using habitat-based methods and provides a potential mechanism for explaining some of the POP recruitment variability observed for this population.
Resumo:
The North Atlantic Oscillation (NAO) is a major mode of variability in the North Atlantic, dominating atmospheric and oceanic conditions. Here, we examine the phytoplankton community-structure response to the NAO using the Continuous Plankton Recorder data set. In the Northeast Atlantic, in the transition region between the gyres, variability in the relative influence of subpolar or subtropical-like conditions is reflected in the physical environment. During positive NAO periods, the region experiences subpolar-like conditions, with strong wind stress and deep mixed layers. In contrast, during negative NAO periods, the region shifts toward more subtropical-like conditions. Diatoms dominate the phytoplankton community in positive NAO periods, whereas in negative NAO periods, dinoflagellates outcompete diatoms. The implications for interannual variability in deep ocean carbon flux are examined using data from the Porcupine Abyssal Plain time-series station. Contrary to expectations, carbon flux to 3000 m is enhanced when diatoms are outcompeted by other phytoplankton functional types. Additionally, highest carbon fluxes were not associated with an increase in biomineral content, which implies that ballasting is not playing a dominant role in controlling the flux of material to the deep ocean in this region. In transition zones between gyre systems, phytoplankton populations can change in response to forcing induced by opposing NAO phases.
Resumo:
In conjunction with the North Pacific Continuous Plankton Recorder program, we conducted surveys of seabirds from June 2002 to June 2007. Here, we tested the hypotheses of (i) east–west variations in coupled plankton and seabird abundance, and (ii) that surface-feeding and diving seabirds vary in their relationships to primary productivity and mesozooplankton species abundance and diversity. To test these hypotheses, we developed statistical models for 20 species of seabirds and 12 zooplankton taxonomic groups. Seabird density was highly variable between seasons, but was consistently higher in the western than eastern North Pacific. Seabird diversity was greater in the east. Zooplankton abundance did not differ between regions. We found associations at the “bulk” level between seabird density and net primary productivity, but only one association between seabirds and total zooplankton abundance or diversity. However, we found many relationships between seabird species and the abundance of different zooplankton summarized at the genus or family level. Some of these taxonomic relationships reflect direct predator–prey interactions, while others may reflect zooplankton that serve as ecological indicators of other prey, such as micronekton, upon which the birds may feed. Surface or near-surface feeding, mostly piscivorous seabirds, did not differ systematically from diving, mainly planktivorous seabirds in their zooplankton associations. Seabirds apparently respond to zooplankton taxonomic groupings more so than bulk zooplankton characteristics, such as abundance or diversity. Macro-ecological studies of remote marine ecosystems using zooplankton and seabirds as ecological indicators provide a framework for understanding and assessing spatial and temporal variations in these difficult-to-study pelagic environments.
Resumo:
The seeding of an expanse of surface waters in the equatorial Pacific Ocean with low concentrations of dissolved iron triggered a massive phytoplankton bloom which consumed large quantities of carbon dioxide and nitrate that these microscopic plants cannot fully utilize under natural conditions. These and other observations provide unequivocal support for the hypothesis that phytoplankton growth in this oceanic region is limited by iron bioavailability.
Resumo:
The spawning areas of tropical anguillid eels in the South Pacific are poorly known, and more information about their life histories is needed to facilitate conservation. We genetically characterized 83 out of 84 eels caught on Gaua Island (Vanuatu) and tagged 8 eels with pop-up satellite transmitters. Based on morphological evidence, 32 eels were identified as Anguilla marmorata, 45 as A. megastoma and 7 as A. obscura. Thirteen of these eels possessed a mitochondrial DNA sequence (control region, 527 bp) or nuclear haplotype (GTH2b, 268 bp) conflicting with their species designation. These individuals also had multi-locus genotypes (6 microsatellite loci) intermediate between the species, and 9 of these eels further possessed heterozygote genotypes at species-diagnostic nuclear single nucleotide polymorphisms (SNPs). We classified these individuals as possibly admixed between A. marmorata and A. megastoma. One A. marmorata and 1 A. megastoma migrated 634 and 874 km, respectively, towards the border between the South Equatorial Current and the South Equatorial Counter Current. Both species descended from around 200 m depth at night to 750 m during the day. Lunar cycle affected the upper limit of migration depths of both species. The tags remained attached for 3 and 5 mo and surfaced <300 km from the pop-up location of a previously tagged A. marmorata pop-up location. A salinity maximum at the pop-up locations corresponding to the upper nighttime eel migration depths may serve as a seamark of the spawning area. The similar pop-up locations of both species and the evidence for admixture suggest that these tropical eels share a sympatric spawning area.
Resumo:
There is ongoing debate as to whether the oligotrophic ocean is predominantly net autotrophic and acts as a CO2 sink, or net heterotrophic and therefore acts as a CO2 source to the atmosphere. This quantification is challenging, both spatially and temporally, due to the sparseness of measurements. There has been a concerted effort to derive accurate estimates of phytoplankton photosynthesis and primary production from satellite data to fill these gaps; however there have been few satellite estimates of net community production (NCP). In this paper, we compare a number of empirical approaches to estimate NCP from satellite data with in vitro measurements of changes in dissolved O2 concentration at 295 stations in the N and S Atlantic Ocean (including the Antarctic), Greenland and Mediterranean Seas. Algorithms based on power laws between NCP and particulate organic carbon production (POC) derived from 14C uptake tend to overestimate NCP at negative values and underestimate at positive values. An algorithm that includes sea surface temperature (SST) in the power function of NCP and 14C POC has the lowest bias and root-mean square error compared with in vitro measured NCP and is the most accurate algorithm for the Atlantic Ocean. Nearly a 13 year time series of NCP was generated using this algorithm with SeaWiFS data to assess changes over time in different regions and in relation to climate variability. The North Atlantic subtropical and tropical Gyres (NATL) were predominantly net autotrophic from 1998 to 2010 except for boreal autumn/winter, suggesting that the northern hemisphere has remained a net sink for CO2 during this period. The South Atlantic subtropical Gyre (SATL) fluctuated from being net autotrophic in austral spring-summer, to net heterotrophic in austral autumn–winter. Recent decadal trends suggest that the SATL is becoming more of a CO2 source. Over the Atlantic basin, the percentage of satellite pixels with negative NCP was 27%, with the largest contributions from the NATL and SATL during boreal and austral autumn–winter, respectively. Variations in NCP in the northern and southern hemispheres were correlated with climate indices. Negative correlations between NCP and the multivariate ENSO index (MEI) occurred in the SATL, which explained up to 60% of the variability in NCP. Similarly there was a negative correlation between NCP and the North Atlantic Oscillation (NAO) in the Southern Sub-Tropical Convergence Zone (SSTC),which explained 90% of the variability. There were also positive correlations with NAO in the Canary Current Coastal Upwelling (CNRY) and Western Tropical Atlantic (WTRA)which explained 80% and 60% of the variability in each province, respectively. MEI and NAO seem to play a role in modifying phases of net autotrophy and heterotrophy in the Atlantic Ocean.
Resumo:
In this paper we present the first decadal reanalysis simulation of the biogeochemistry of the North West European shelf, along with a full evaluation of its skill and value. An error-characterized satellite product for chlorophyll was assimilated into a physical-biogeochemical model of the North East Atlantic, applying a localized Ensemble Kalman filter. The results showed that the reanalysis improved the model predictions of assimilated chlorophyll in 60% of the study region. Model validation metrics showed that the reanalysis had skill in matching a large dataset of in situ observations for ten ecosystem variables. Spearman rank correlations were significant and higher than 0.7 for physical-chemical variables (temperature, salinity, oxygen), ∼0.6 for chlorophyll and nutrients (phosphate, nitrate, silicate), and significant, though lower in value, for partial pressure of dissolved carbon dioxide (∼0.4). The reanalysis captured the magnitude of pH and ammonia observations, but not their variability. The value of the reanalysis for assessing environmental status and variability has been exemplified in two case studies. The first shows that between 340,000-380,000 km2 of shelf bottom waters were oxygen deficient potentially threatening bottom fishes and benthos. The second application confirmed that the shelf is a net sink of atmospheric carbon dioxide, but the total amount of uptake varies between 36-46 Tg C yr−1 at a 90% confidence level. These results indicate that the reanalysis output dataset can inform the management of the North West European shelf ecosystem, in relation to eutrophication, fishery, and variability of the carbon cycle.
Resumo:
The biogeography and ecology of the species of Chthamalus present on the west coast of America are described, using data from 51 localities from Alaska to Panama, together with their zonation on the shore with respect to that of other barnacles. The species present were C. dalli, Pilsbry 1916, C. fissus, Darwin, 1854, C. anisopoma Pilsbry 1916 and four species in the C. panamensis complex. The latter are C. panamensis Pilsbry, 1916, C. hedgecocki, Pitombo & Burton, 2007, C. alani nom. nov. (formerly C. southwardorum Pitombo & Burton, 2007) and C. newmani sp. nov.). These four species were initially separated by enzyme electrophoresis. They could only be partially separated by DNA bar coding but may be separated using morphological characters.