93 resultados para Trophic guilds


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mangroves are highly productive environments that play important ecological and socioeconomic roles; however, they have been impacted to different degrees in most countries worldwide. The knowledge of which organisms inhabit this environment and their ecological interactions is the first step towards its conservation. The natural variability of environmental factors in mangroves provides numerous niches available to different species. Meiofauna have patchy patterns of distribution that are related to the availability of resources. Hence, meiofauna are expected to present a high diversity of different taxa occupying the different microhabitats offered by mangroves. This work aims to test the hypothesis that the assemblage structure of Nematoda varies significantly among mangrove microhabitats and to contribute knowledge on the meiofauna diversity in mangrove environments. This work was carried out in a mangrove region at Pernambuco state, Northeastern Brazil. Qualitative samples were collected in nine microhabitats which show different characteristics mainly in terms of presence of vegetation or another organism and sediment grain size. Univariate and multivariate analysis were applied to Nematoda genera abundance data. Our results demonstrate the existence of significant differences among microhabitats regarding nematode assemblage structure corroborating the hypothesis. Different Nematoda assemblages are present in at least seven microhabitats. These assemblages are composed of nematode genera with different trophic and morphological features, demonstrating a strong relationship between morphological diversity and ecological plasticity. Furthermore, this study also demonstrates the importance of the conservation of this ecosystem and its attributes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Nazaré Canyon on the Portuguese Margin (NE Atlantic) was sampled during spring-summer for three consecutive years (2005–2007), permitting the first inter-annual study of the meiofaunal communities at the Iberian Margin at two abyssal depths (~3500 m and ~4400 m). Using new and already published data, the meiofauna standing stocks (abundance and biomass) and nematode structural and functional diversity were investigated in relation to the sediment biogeochemistry (e.g. organic carbon, nitrogen, chlorophyll a, phaeopigments) and grain size. A conspicuous increase in sand content from 2005 to 2006 and decrease of phytodetritus at both sites, suggested the occurrence of one or more physical disturbance events. Nematode standing stocks and trophic diversity decreased after these events, seemingly followed by a recovery/recolonisation period in 2007, which was strongly correlated with an increase in the quantity and bioavailability of phytodetrital organic matter supplied. Changes in meiofauna assemblages, however, also differed between stations, likely because of the contrasting hydrodynamic and food supply conditions. Higher meiofauna and nematode abundances, biomass and trophic complexity were found at the shallowest canyon station, where the quantity, quality and bioavailability of food material were higher than at the deeper site. The present results suggest that even though inter-annual variations in the sedimentary environment can regulate the meiofauna in the abyssal Nazaré Canyon, heterogeneity between sampling locations in the canyon were more pronounced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exploring climate and anthropogenic impacts on marine ecosystems requires an understanding of how trophic components interact. However, integrative end-to-end ecosystem studies (experimental and/or modelling) are rare. Experimental investigations often concentrate on a particular group or individual species within a trophic level, while tropho-dynamic field studies typically employ either a bottom-up approach concentrating on the phytoplankton community or a top-down approach concentrating on the fish community. Likewise the emphasis within modelling studies is usually placed upon phytoplankton-dominated biogeochemistry or on aspects of fisheries regulation. In consequence the roles of zooplankton communities (protists and metazoans) linking phytoplankton and fish communities are typically under-represented if not (especially in fisheries models) ignored. Where represented in ecosystem models, zooplankton are usually incorporated in an extremely simplistic fashion, using empirical descriptions merging various interacting physiological functions governing zooplankton growth and development, and thence ignoring physiological feedback mechanisms. Here we demonstrate, within a modelled plankton food-web system, how trophic dynamics are sensitive to small changes in parameter values describing zooplankton vital rates and thus the importance of using appropriate zooplankton descriptors. Through a comprehensive review, we reveal the mismatch between empirical understanding and modelling activities identifying important issues that warrant further experimental and modelling investigation. These include: food selectivity, kinetics of prey consumption and interactions with assimilation and growth, form of voided material, mortality rates at different age-stages relative to prior nutrient history. In particular there is a need for dynamic data series in which predator and prey of known nutrient history are studied interacting under varied pH and temperature regimes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

‘Wasp-waist’ systems are dominated by a mid trophic-level species that is thought to exert top-down control on its food and bottom-up control on its predators. Sardines, anchovy, and Antarctic krill are suggested examples, and here we use locusts to explore whether the wasp-waist concept also applies on land. These examples also display the traits of mobile aggregations and dietary diversity, which help to reduce the foraging footprint from their large, localised biomasses. This suggests that top-down control on their food operates at local aggregation scales and not at wider scales suggested by the original definition of wasp-waist. With this modification, the wasp-waist framework can cross-fertilise marine and terrestrial approaches, revealing how seemingly disparate but economically important systems operate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of environmental variables on blue shark Prionace glauca catch per unit effort (CPUE) in a recreational fishery in the western English Channel, between June and September 1998–2011, was quantified using generalized additive models (GAMs). Sea surface temperature (SST) explained 1·4% of GAM deviance, and highest CPUE occurred at 16·7° C, reflecting the optimal thermal preferences of this species. Surface chlorophyll a concentration (CHL) significantly affected CPUE and caused 27·5% of GAM deviance. Additionally, increasing CHL led to rising CPUE, probably due to higher productivity supporting greater prey biomass. The density of shelf-sea tidal mixing fronts explained 5% of GAM deviance, but was non-significant, with increasing front density negatively affecting CPUE. Time-lagged frontal density significantly affected CPUE, however, causing 12·6% of the deviance in a second GAM and displayed a positive correlation. This outcome suggested a delay between the evolution of frontal features and the subsequent accumulation of productivity and attraction of higher trophic level predators, such as P. glauca.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In marine environments, macrofauna living in or on the sediment surface may alter the structure, diversity and function of benthic microbial communities. In particular, microbial nitrogen (N)-cycling processes may be enhanced by the activity of large bioturbating organisms. Here, we study the effect of the burrowing mud shrimp Upogebia deltaura upon temporal variation in the abundance of genes representing key N-cycling functional guilds. The abundance of bacterial genes representing different N-cycling guilds displayed different temporal patterns in burrow sediments in comparison with surface sediments, suggesting that the burrow provides a unique environment where bacterial gene abundances are influenced directly by macrofaunal activity. In contrast, the abundances of archaeal ammonia oxidizers varied temporally but were not affected by bioturbation, indicating differential responses between bacterial and archaeal ammonia oxidizers to environmental physicochemical controls. This study highlights the importance of bioturbation as a control over the temporal variation in nitrogen-cycling microbial community dynamics within coastal sediments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of environmental variables on blue shark Prionace glauca catch per unit effort (CPUE) in a recreational fishery in the western English Channel, between June and September 1998–2011, was quantified using generalized additive models (GAMs). Sea surface temperature (SST) explained 1·4% of GAM deviance, and highest CPUE occurred at 16·7° C, reflecting the optimal thermal preferences of this species. Surface chlorophyll a concentration (CHL) significantly affected CPUE and caused 27·5% of GAM deviance. Additionally, increasing CHL led to rising CPUE, probably due to higher productivity supporting greater prey biomass. The density of shelf-sea tidal mixing fronts explained 5% of GAM deviance, but was non-significant, with increasing front density negatively affecting CPUE. Time-lagged frontal density significantly affected CPUE, however, causing 12·6% of the deviance in a second GAM and displayed a positive correlation. This outcome suggested a delay between the evolution of frontal features and the subsequent accumulation of productivity and attraction of higher trophic level predators, such as P. glauca.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antarctic krill (Euphausia superba) were sampled in contrasting habitats: a seasonally ice-covered deep ocean (Lazarev Sea), ice-free shelves at their northern range (South Georgia) and the Antarctic Peninsula (Bransfield Strait), and shelf and oceanic sites in the Scotia Sea. Across 92 stations, representing a year-round average, the food volume in krill stomachs comprised 71 +/- 29% algae, 17 +/- 21% protozoans, and 12 +/- 25% metazoans. Fatty acid trophic markers showed that copepods were consistently part of krill diet, not a switch food. In open waters, both diatom and copepod consumption increased with phytoplankton abundance. Under sea ice, ingestion of diatoms became rare, whereas feeding on copepods remained constant. During winter, larvae contained high but variable proportions of diatom markers, whereas in postlarvae the role of copepods increased with krill body length. Overwintering differed according to habitat. Krill from South Georgia had lower lipid stores than those from the Bransfield Strait or Lazarev Sea. Feeding effort was much reduced in Lazarev Sea krill, whereas most individuals from the Bransfield Strait and South Georgia contained phytoplankton and seabed detritus in their stomachs. Their retention of essential body reserves indicates that krill experienced most winter hardship in the Lazarev Sea, followed by South Georgia and then Bransfield Strait. This was reflected in the delayed development from juveniles to adults in the Lazarev Sea. Circumpolar comparisons of length frequencies suggest that krill growth conditions are more favorable in the southwest Atlantic than in the Lazarev Sea or off East Antarctica because of longer phytoplankton bloom periods and rewarding access to benthic food.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has long been recognised that there are strong interactions and feedbacks between climate, upper ocean biogeochemistry and marine food webs, and also that food web structure and phytoplankton community distribution are important determinants of variability in carbon production and export from the euphotic zone. Numerical models provide a vital tool to explore these interactions, given their capability to investigate multiple connected components of the system and the sensitivity to multiple drivers, including potential future conditions. A major driver for ecosystem model development is the demand for quantitative tools to support ecosystem-based management initiatives. The purpose of this paper is to review approaches to the modelling of marine ecosystems with a focus on the North Atlantic Ocean and its adjacent shelf seas, and to highlight the challenges they face and suggest ways forward. We consider the state of the art in simulating oceans and shelf sea physics, planktonic and higher trophic level ecosystems, and look towards building an integrative approach with these existing tools. We note how the different approaches have evolved historically and that many of the previous obstacles to harmonisation may no longer be present. We illustrate this with examples from the on-going and planned modelling effort in the Integrative Modelling Work Package of the EURO-BASIN programme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the near future, the marine environment is likely to be subjected to simultaneous increases in temperature and decreased pH. The potential effects of these changes on intertidal, meiofaunal assemblages were investigated using a mesocosm experiment. Artificial Substrate Units containing meiofauna from the extreme low intertidal zone were exposed for 60 days to eight experimental treatments (four replicates for each treatment) comprising four pH levels: 8.0 (ambient control), 7.7 & 7.3 (predicted changes associated with ocean acidification), and 6.7 (CO2 point-source leakage from geological storage), crossed with two temperatures: 12 °C (ambient control) and 16 °C (predicted). Community structure, measured using major meiofauna taxa was significantly affected by pH and temperature. Copepods and copepodites showed the greatest decline in abundance in response to low pH and elevated temperature. Nematodes increased in abundance in response to low pH and temperature rise, possibly caused by decreased predation and competition for food owing to the declining macrofauna density. Nematode species composition changed significantly between the different treatments, and was affected by both seawater acidification and warming. Estimated nematode species diversity, species evenness, and the maturity index, were substantially lower at 16 °C, whereas trophic diversity was slightly higher at 16 °C except at pH 6.7. This study has demonstrated that the combination of elevated levels of CO2 and ocean warming may have substantial effects on structural and functional characteristics of meiofaunal and nematode communities, and that single stressor experiments are unlikely to encompass the complexity of abiotic and biotic interactions. At the same time, ecological interactions may lead to complex community responses to pH and temperature changes in the interstitial environment

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phytoplankton, at the base of the marine food web, represent a fundamental food source in coral reef ecosystems. The timing (phenology) and magnitude of the phytoplankton biomass are major determinants of trophic interactions. The Red Sea is one of the warmest and most saline basins in the world, characterized by an arid tropical climate regulated by the monsoon. These extreme conditions are particularly challenging for marine life. Phytoplankton phenological indices provide objective and quantitative metrics to characterize phytoplank- ton seasonality. The indices i.e. timings of initiation, peak, termination and duration are estimated here using 15 years (1997–2012) of remote sensing ocean-color data from the European Space Agency (ESA) Climate Change Initiative project (OC-CCI) in the entire Red Sea basin. The OC-CCI product, comprising merged and bias-corrected observations from three independent ocean-color sensors (SeaWiFS, MODIS and MERIS), and processed using the POLYMER algorithm (MERIS period), shows a significant increase in chlorophyll data cover- age, especially in the southern Red Sea during the months of summer NW monsoon. In open and reef-bound coastal waters, the performance of OC-CCI chlorophyll data is shown to be comparable with the performance of other standard chlorophyll products for the global oceans. These features have permitted us to investigate phytoplankton phenology in the entire Red Sea basin, and during both winter SE monsoon and summer NW monsoon periods. The phenological indices are estimated in the four open water provinces of the basin, and further examined at six coral reef complexes of particular socio-economic importance in the Red Sea, including Siyal Islands, Sharm El Sheikh, Al Wajh bank, Thuwal reefs, Al Lith reefs and Farasan Islands. Most of the open and deeper waters of the basin show an apparent higher chlorophyll concentration and longer duration of phyto- plankton growth during the winter period (relative to the summer phytoplankton growth period). In contrast, most of the reef-bound coastal waters display equal or higher peak chlorophyll concentrations and equal or lon- ger duration of phytoplankton growth during the summer period (relative to the winter phytoplankton growth period). The ecological and biological significance of the phytoplankton seasonal characteristics are discussed in context of ecosystem state assessment, and particularly to support further understanding of the structure and functioning of coral reef ecosystems in the Red Sea.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is an increasing demand for environmental assessments of the marine environment to include ecosystem function. However, existing schemes are predominantly based on taxonomic (i.e. structural) measures of biodiversity. Biodiversity and Ecosystem Function (BEF) relationships are suggested to provide a mechanism for converting taxonomic information into surrogates of ecosystem function. This review assesses the evidence for marine BEF relationships and their potential to be used in practical monitoring applications (i.e. operationalized). Five key requirements were identified for the practical application of BEF relationships: (1) a complete understanding of strength, direction and prevalence of marine BEF relationships, (2) an understanding of which biological components are influential within specific BEF relationships, (3) the biodiversity of the selected biological components can be measured easily, (4) the ecological mechanisms that are the most important for generating marine BEF relationships, i.e. identity effects or complementarity, are known and (5) the proportion of the overall functional variance is explained by biodiversity, and hence BEF relationships, has been established. Numerous positive and some negative BEF relationships were found within the literature, although many reproduced poorly the natural species richness, trophic structures or multiple functions of real ecosystems (requirement 1). Null relationships were also reported. The consistency of the positive and negative relationships was often low that compromised the ability to generalize BEF relationships and confident application of BEF within marine monitoring. Equally, some biological components and functions have received little or no investigation. Expert judgement was used to attribute biological components using spatial extent, presence and functional rate criteria (requirement 2). This approach highlighted the main biological components contributing the most to specific ecosystem functions, and that many of the particularly influential components were found to have received the least amount of research attention. The need for biodiversity to be measureable (requirement 3) is possible for most biological components although difficult within the functionally important microbes. Identity effects underpinned most marine BEF relationships (requirement 4). As such, processes that translated structural biodiversity measures into functional diversity were found to generate better BEF relationships. The analysis of the contribution made by biodiversity, over abiotic influences, to the total expression of a particular ecosystem function was rarely measured or considered (requirement 5). Hence it is not possible to determine the overall importance of BEF relationships within the total ecosystem functioning observed. In the few studies where abiotic factors had been considered, it was clear that these modified BEF relationships and have their own direct influence on functional rate. Based on the five requirements, the information required for immediate ‘operationalization’ of BEF relationships within marine functional monitoring is lacking. However, the concept of BEF inclusion within practical monitoring applications, supported by ecological modelling, shows promise for providing surrogate indicators of functioning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human activity causes ocean acidification (OA) though the dissolution of anthropogenically generated CO2 into seawater, and eutrophication through the addition of inorganic nutrients. Eutrophication increases the phytoplankton biomass that can be supported during a bloom, and the resultant uptake of dissolved inorganic carbon during photosynthesis increases water-column pH (bloom-induced basification). This increased pH can adversely affect plankton growth. With OA, basification commences at a lower pH. Using experimental analyses of the growth of three contrasting phytoplankton under different pH scenarios, coupled with mathematical models describing growth and death as functions of pH and nutrient status, we show how different conditions of pH modify the scope for competitive interactions between phytoplankton species. We then use the models previously configured against experimental data to explore how the commencement of bloom-induced basification at lower pH with OA, and operating against a background of changing patterns in nutrient loads, may modify phytoplankton growth and competition. We conclude that OA and changed nutrient supply into shelf seas with eutrophication or de-eutrophication (the latter owing to pollution control) has clear scope to alter phytoplankton succession, thus affecting future trophic dynamics and impacting both biogeochemical cycling and fisheries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microscopic plastic debris, termed “microplastics”, are of increasing environmental concern. Recent studies have demonstrated that a range of zooplankton, including copepods, can ingest microplastics. Copepods are a globally abundant class of zooplankton that form a key trophic link between primary producers and higher trophic marine organisms. Here we demonstrate that ingestion of microplastics can significantly alter the feeding capacity of the pelagic copepod Calanus helgolandicus. Exposed to 20 μm polystyrene beads (75 microplastics mL–1) and cultured algae ([250 μg C L–1) for 24 h, C. helgolandicus ingested 11% fewer algal cells (P = 0.33) and 40% less carbon biomass (P < 0.01). There was a net downward shift in the mean size of algal prey consumed (P < 0.001), with a 3.6 fold increase in ingestion rate for the smallest size class of algal prey (11.6–12.6 μm), suggestive of postcapture or postingestion rejection. Prolonged exposure to polystyrene microplastics significantly decreased reproductive output, but there were no significant differences in egg production rates, respiration or survival. We constructed a conceptual energetic (carbon) budget showing that microplastic-exposed copepods suffer energetic depletion over time. We conclude that microplastics impede feeding in copepods, which over time could lead to sustained reductions in ingested carbon biomass.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plastic debris is now ubiquitous in the marine environment affecting a wide range of taxa, from microscopic zooplankton to large vertebrates. Its persistence and dispersal throughout marine ecosystems has meant that sensitivity toward the scale of threat is growing, particularly for species of conservation concern, such as marine turtles. Their use of a variety of habitats, migratory behaviour, and complex life histories leave them subject to a host of anthropogenic stressors, including exposure to marine plastic pollution. Here, we review the evidence for the effects of plastic debris on turtles and their habitats, highlight knowledge gaps, and make recommendations for future research. We found that, of the seven species, all are known to ingest or become entangled in marine debris. Ingestion can cause intestinal blockage and internal injury, dietary dilution, malnutrition, and increased buoyancy which in turn can result in poor health, reduced growth rates and reproductive output, or death. Entanglement in plastic debris (including ghost fishing gear) is known to cause lacerations, increased drag—which reduces the ability to forage effectively or escape threats—and may lead to drowning or death by starvation. In addition, plastic pollution may impact key turtle habitats. In particular, its presence on nesting beaches may alter nest properties by affecting temperature and sediment permeability. This could influence hatchling sex ratios and reproductive success, resulting in population level implications. Additionally, beach litter may entangle nesting females or emerging hatchlings. Lastly, as an omnipresent and widespread pollutant, plastic debris may cause wider ecosystem effects which result in loss of productivity and implications for trophic interactions. By compiling and presenting this evidence, we demonstrate that urgent action is required to better understand this issue and its effects on marine turtles, so that appropriate and effective mitigation policies can be developed.