110 resultados para Reid, Emerson


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biological affinity of the extinct microfossil order chitinozoa has been the source of much discussion in the fifty years since they were first discovered. Within this period these flask-shaped, organic-walled organisms have been variously attributed to rhizopods, flagellates, tintinnids, chrysomonads, metazoan eggs, dinoflagellates, and fungi. Most of these suggested relationships were made before it was recognised that chitinozoans were encapsulated and must therefore be resting cysts or eggs and not active individuals. There are no living organisms which combine all the characteristics of the chitinozoa. Of all the possibilities, a grouping of flask-shaped cysts which have been found in present-day marine plankton and sediment comes closest to characterising the morphology of chitinozoa. This grouping of flask-shaped cysts includes forms which have been found within tintinnid loricae. Another modern cyst type Pacillina arctica, which is believed to be a ciliate cyst, comes close to replicating the morphology of the chitinozoan genus Hoegisphaera. This paper discusses the structure of tintinnid, other flask-shaped cysts and Pacillina arctica in relation to chitinozoan morphology, drawing attention to similarities and differences. The occurrence and distribution of these cyst forms in present-day plankton is also described and interpreted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hollow, black reticulate ‘microfossils’ of unknown affinity found in Ordovician to late Cretaceous sediments from North America, Europe and Australia were given the name Linotolypa by Eisenack in 1962. In 1978, he recognised that they were pseudo-microfossils consisting of asphalt, and noted that their structure resembled that of soap bubbles formed in agitated suspensions. These objects are well known as a component of the particles caught from the air by pollen and spore traps at the present day. They are correctly termed ‘cenospheres’ and are formed from coal and possibly pitch and fuel oil by incomplete combustion. If their presence were to be confirmed in Palaeozoic sediments, this would provide important new evidence for the occurrence of fire in the geological record and of the history of levels of O2 in the atmosphere.