98 resultados para Ethnic Communities
Resumo:
A mesocosm experiment was conducted to quantify the effects of reduced pH and elevated temperature on an intact marine invertebrate community. Standardised faunal communities, collected from the extreme low intertidal zone using artificial substrate units, were exposed to one of eight nominal treatments (four pH levels: 8.0, 7.7, 7.3 and 6.7, crossed with two temperature levels: 12 and 16°C). After 60 days exposure communities showed significant changes in structure and lower diversity in response to reduced pH. The response to temperature was more complex. At higher pH levels (8.0 and 7.7) elevated temperature treatments contained higher species abundances and diversity than the lower temperature treatments. In contrast, at lower pH levels (7.3 and 6.7), elevated temperature treatments had lower species abundances and diversity than lower temperature treatments. The species losses responsible for these changes in community structure and diversity were not randomly distributed across the different phyla examined. Molluscs showed the greatest reduction in abundance and diversity in response to low pH and elevated temperature, whilst annelid abundance and diversity was mostly unaffected by low pH and was higher at the elevated temperature. The arthropod response was between these two extremes with moderately reduced abundance and diversity at low pH and elevated temperature. Nematode abundance increased in response to low pH and elevated temperature, probably due to the reduction of ecological constraints, such as predation and competition, caused by a decrease in macrofaunal abundance. This community-based mesocosm study supports previous suggestions, based on observations of direct physiological impacts, that ocean acidification induced changes in marine biodiversity will be driven by differential vulnerability within and between different taxonomical groups. This study also illustrates the importance of considering indirect effects that occur within multispecies assemblages when attempting to predict the consequences of ocean acidification and global warming on marine communities.
Resumo:
The composition and distribution of phytoplankton assemblages around the tip of the Antarctic Peninsula were studied during two summer cruises (February/March 2008 and 2009). Water samples were collected for HPLC/CHEMTAX pigment and microscopic analysis. A great spatial variability in chlorophyll a (Chl a) was observed in the study area: highest levels in the vicinity of the James Ross Island (exceeding 7 mg m−3 in 2009), intermediate values (0.5 to 2 mg m−3) in the Bransfield Strait, and low concentrations in the Weddell Sea and Drake Passage (below 0.5 mg m−3). Phytoplankton assemblages were generally dominated by diatoms, especially at coastal stations with high Chl a concentration, where diatom contribution was above 90% of total Chl a. Nanoflagellates, such as cryptophytes and/or Phaeocystis antarctica, replaced diatoms in open-ocean areas (e.g., Weddell Sea). Many species of peridinin-lacking autotrophic dinoflagellates (e.g., Gymnodinium spp.) were also important to total Chl a biomass at well-stratified stations of Bransfield Strait. Generally, water column structure was the most important environmental factor determining phytoplankton communities’ biomass and distribution. The HPLC pigment data also allowed the assessment of different physiological responses of phytoplankton to ambient light variation. The present study provides new insights about the dynamics of phytoplankton in an undersampled region of the Southern Ocean highly susceptible to global climate change.
Resumo:
In the frame of the European Project on Ocean Acidification (EPOCA), the response of an Arctic pelagic community (<3 mm) to a gradient of seawater pCO(2) was investigated. For this purpose 9 large-scale in situ mesocosms were deployed in Kongsfjorden, Svalbard (78 degrees 56.2' N, 11 degrees 53.6' E), in 2010. The present study investigates effects on the communities of particle-attached (PA; >3 mu m) and free-living (FL; <3 mu m > 0.2 mu m) bacteria by Automated Ribosomal Intergenic Spacer Analysis (ARISA) in 6 of the mesocosms, ranging from 185 to 1050 mu atm initial pCO(2), and the surrounding fjord. ARISA was able to resolve, on average, 27 bacterial band classes per sample and allowed for a detailed investigation of the explicit richness and diversity. Both, the PA and the FL bacterioplankton community exhibited a strong temporal development, which was driven mainly by temperature and phytoplankton development. In response to the breakdown of a picophytoplankton bloom, numbers of ARISA band classes in the PA community were reduced at low and medium CO2 (similar to 185-685 mu atm) by about 25 %, while they were more or less stable at high CO2 (similar to 820-1050 mu atm). We hypothesise that enhanced viral lysis and enhanced availability of organic substrates at high CO2 resulted in a more diverse PA bacterial community in the post-bloom phase. Despite lower cell numbers and extracellular enzyme activities in the post-bloom phase, bacterial protein production was enhanced in high CO2 mesocosms, suggesting a positive effect of community richness on this function and on carbon cycling by bacteria.
Resumo:
We have examined the inter- and intra-group seasonal succession of 113 diatom and dinoflagellate taxa, as surveyed by the Continuous Plankton Recorder (CPR) in the North Atlantic, by grouping taxa according to two key functional traits: cell size (mg C cell21) and trophic strategy (photoautotrophy, mixotrophy, or heterotrophy). Mixotrophic dinoflagellates follow photoautotrophic diatoms but precede their obligate heterotrophic counterparts in the succession because of the relative advantages afforded by photosynthesizing when light and nutrients are available in spring. The mean cell size of the sampled diatoms is smallest in the summer, likely because of the higher specific nutrient affinity of smaller relative to larger cells. Contrastingly, we hypothesize that mixotrophy diminishes the size selection based on nutrient limitation and accounts for the lack of a seasonal size shift among surveyed dinoflagellates. Relatively small, heterotrophic dinoflagellates (mg C cell21 , 1023) peak after other, larger dinoflagellates, in part because of the increased abundance of their small prey during nutrientdeplete summer months. The largest surveyed diatoms (mg C cell21 . 1022) bloom later than others, and we hypothesize that this may be because of their relatively slow maximum potential growth rates and high internal nutrient storage, as well as to the slower predation of these larger cells. The new trait database and analysis presented here helps translate the taxonomic information of the CPR survey into metrics that can be directly compared with trait-based models.
Resumo:
Zooplankton are indicators of the response of marine ecosystems to environmental variability. The relationships between zooplankton communities on the Scotian Shelf and hydrographic and geographic regions of the Scotian Shelf in the 1990s and 2000s were described using complementary data sets, each resolving different space and time scales. The Atlantic Zone Monitoring Program (AZMP) sampled Scotian Shelf zooplankton from the whole water column twice per year at stations along three cross-shelf transects and semi-monthly at a fixed station on the inshore central shelf, while Continuous Plankton Recorder (CPR) samples were collected from near-surface waters approximately monthly on an along-shelf transect. Variability patterns were compared among these three data sets to identify robust spatial and interannual trends. Stations were clustered based on taxonomic composition, and spatial clusters were compared to hydrographic boundaries and bathymetry to determine whether temporal changes in community composition were driven by changes in water mass distributions on the shelf. This project identifies zooplankton community and abundance shifts that may affect fish recruitment in the northwest Atlantic and contributes to development of ecosystem-based fisheries management on the Scotian Shelf.