73 resultados para Celtic migrations


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coccolithophores, the dominant pelagic calcifiers in the oceans, play a key role in the marine carbon cycle through calcification, primary production and carbon export, the main drivers of the biological CO2 pump. In May 2002 a cruise was conducted on the outer shelf of the North-West European continental margin, from the north Bay of Biscay to the Celtic Sea (47.0 degrees-50.5 degrees N, 5.0 degrees-11.0 degrees W), an area where massive blooms of Emiliania huxleyi are observed annually. Biogeochemical variables including primary production, calcification, partial pressure of CO2 (pCO(2)), chlorophyll-a (Chl-a), particle load, particulate organic and inorganic carbon (POC, PIC) and Th-234, were measured in surface waters to assess particle dynamic and carbon export in relation to the development of a coccolithophore bloom. We observed a marked northward decrease in Chl-a concentration and calcification rates: the bloom exhibited lower values and may be less well developed in the Goban Spur area. The export fluxes of POC and PIC from the top 80 m, determined using the ratios of POC and PIC to Th-234 of particles, ranged from 81 to 323 mg C m(-2) d(-1) and from 30 to 84 mg C m(-2) d(-1), respectively. The highest fluxes were observed in waters presenting a well-developed coccolithophore bloom, as shown by high reflectance of surface waters. This experiment confirms that the occurrence of coccolithophores promotes efficient export of organic and inorganic carbon on the North-West European margin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The abundance of wild salmon (Salmo salar) in the North Atlantic has declined markedly since the late 1980s as a result of increased marine mortality that coincided with a marked rise in sea temperature in oceanic foraging areas. There is substantial evidence to show that temperature governs the growth, survival, and maturation of salmon during their marine migrations through either direct or indirect effects. In an earlier study (2003), long-term changes in three trophic levels (salmon, zooplankton, and phytoplankton) were shown to be correlated significantly with sea surface temperature (SST) and northern hemisphere temperature (NHT). A sequence of trophic changes ending with a stepwise decline in the total nominal catch of North Atlantic salmon (regime shift in ∼1986/1987) was superimposed on a trend to a warmer dynamic regime. Here, the earlier study is updated with catch and abundance data to 2010, confirming earlier results and detecting a new abrupt shift in ∼1996/1997. Although correlations between changes in salmon, plankton, and temperature are reinforced, the significance of the correlations is reduced because the temporal autocorrelation of time-series substantially increased due to a monotonic trend in the time-series, probably related to global warming. This effect may complicate future detection of effects of climate change on natural systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The vertical distribution of decapod larvae off the northwest Portuguese coast was analysed in relation to associated environmental conditions from sampling during a 69 h period around a current meter mooring located on the shelf, approximately 21 km off the coast. Plankton samples were collected every 2 h at the surface with a neuston net and through the water column with a Longhurst Hardy Plankton Recorder (Pro-LHPR), allowing a very detailed resolution of larval vertical distribution. Environmental data (temperature, salinity, and chlorophyll a) were obtained every hour. To investigate the horizontal distribution of decapod larvae in relation to the coast, a plankton-sampling grid was carried out before the 69 h fixed station. Larvae of shelf decapod species were widely distributed over the shelf, while those of inshore species were found much closer to the coast. Decapod larvae (zoeae and megalopae) showed clear diel vertical migrations, only appearing in the upper 20 m at night, a migration that did not appear to be affected by physical conditions in the water column. Larval densities were highly variable, 0.01 to 215 ind. m super(-3) for zoeae and 0 to 93 ind. m super(-3) for megalopae, the zoeae being generally more abundant. The results indicated that during the day larvae accumulate very close to the bottom. The diel vertical migration behaviour is discussed as one of the contributing mechanisms for larval retention over the shelf, even with offshore transport conditions promoted by coastal upwelling, and is hence of major relevance for the recruitment success of decapod species that inhabit inshore and shelf zones of coastal upwelling systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Climate change accentuates the need for knowing how temperature impacts the life history and productivity of economically and ecologically important species of fish. We examine the influence of temperature on the timing of the spawning and migrations of North Sea Mackerel using data from larvae CPR surveys, egg surveys and commercial landings from Danish coastal fisheries in the North Sea, Skagerrak, Kattegat and inner Danish waters. The three independent sources of data all show that there is a significant relationship between the timing of spawning and sea surface temperature. Large mackerel are shown to arrive at the feeding areas before and leave later than small mackerel and the sequential appearance of mackerel in each of the feeding areas studied supports the anecdotal evidence for an eastward post-spawning migration. Occasional commercial catches taken in winter in the Sound N, Kattegat and Skagerrak together with catches in the first quarter IBTS survey furthermore indicate some overwintering here. Significant relationships between temperature and North Sea mackerel spawning and migration have not been documented before. The results have implications for mackerel resource management and monitoring. An increase in temperature is likely to affect the timing and magnitude of the growth, recruitment and migration of North Sea mackerel with subsequent impacts on its sustainable exploitation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Broad scale climate forcing can interact with local environmental processes to affect the observed ecological phenomena. This causes potential problems of over-extrapolation for results from a limited number of sites or the averaging out of region-specific responses if data from too wide an area are combined. In this study, an area similar in extent to the Celtic Biscay Large Marine Ecosystem, but including off-shelf areas, was partitioned using clustering of satellite chlorophyll (chl-a) measurements. The resulting clusters were used to define areas over which to combine copepod data from the Continuous Plankton Recorder. Following filtering due to data limitations, nine regions were defined with sufficient records for analysis. These regions were consistent with known oceanographic structure in the study area. Off-shelf regions showed a progressively later timing in the seasonal peak of chl-a measurements moving northwards. Generalised additive models were used to estimate seasonal and multiannual signals in the adult and juvenile stages of Calanus finmarchicus, C. helgolandicus and the Paracalanus–Pseudocalanus group. Associations between variables (sea surface temperature (SST), phenology and annual abundance) differed among taxonomic groups, but even within taxonomic groups, relationships were not consistent across regions. For example, in the deep waters off Spain and Portugal the annual abundance of Calanus finmarchicus has a weak positive association with SST, in contrast to the pattern in most other regions. The regions defined in this study provide an objective basis for investigations into the long term dynamics of plankton populations and suggest suitable sub regions for deriving pelagic system indicators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Continuous Plankton Recorder survey has monitored plankton in the Northwest Atlantic at monthly intervals since 1962, with an interegnum between 1978 and 1990. In May 1999, large numbers of the Pacific diatom Neodenticula seminae were found in Continuous Plankton Recorder (CPR) samples in the Labrador Sea as the first record in the North Atlantic for more than 800 000 years. The event coincided with modifications in Arctic hydrography and circulation, increased flows of Pacific water into the Northwest Atlantic and in the previous year the exceptional occurrence of extensive ice-free water to the North of Canada. These observations indicate that N. seminae was carried in a pulse of Pacific water in 1998/early 1999 via the Canadian Arctic Archipelago and/or Fram Strait. The species occurred previously in the North Atlantic during the Pleistocene from similar to 1.2 to similar to 0.8 Ma as recorded in deep sea sediment cores. The reappearance of N. seminae in the North Atlantic is an indicator of the scale and speed of changes that are taking place in the Arctic and North Atlantic oceans as a consequence of regional climate warming. Because of the unusual nature of the event it appears that a threshold has been passed, marking a change in the circulation between the North Pacific and North Atlantic Oceans via the Arctic. Trans-Arctic migrations from the Pacific into the Atlantic are likely to occur increasingly over the next 100 years as Arctic ice continues to melt affecting Atlantic biodiversity and the biological pump with consequent feedbacks to the carbon cycle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Identifying key marine megavertebrate habitats has become ever more important as concern increases regarding global fisheries bycatch and accelerated climate change. This will be aided by a greater understanding of the patterns and processes determining the spatiotemporal distribution of species of conservation concern. We identify probable foraging grounds for leatherback turtles in the NE Atlantic using monthly landscapes of gelatinous organism distribution constructed from Continuous Plankton Recorder Survey data. Using sightings data (n = 2013 records, 1954 to 2003) from 9 countries (UK, Ireland, France, Belgium, The Netherlands, Denmark, Germany, Norway and Sweden), we show sea surface temperatures of approximately 10 to 12 degree C most likely indicate the lower thermal threshold for accessible habitats during seasonal foraging migrations to high latitudes. Integrating maps of gelatinous plankton as a possible indicator of prey distribution with thermal tolerance parameters demonstrates the dynamic (spatial and temporal) nature of NE Atlantic foraging habitats. We highlight the importance of body size- related thermal constraints in structuring leatherback foraging populations and demonstrate a latitudinal gradient in body size (Bergmann's rule) where smaller animals are excluded from higher latitude foraging areas. We highlight the marine area of the European continental shelf edge as being both thermally accessible and prey rich, and therefore potentially supporting appreciable densities of foraging leatherbacks, with some suitable areas not yet extensively surveyed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Assessment of the quality of the marine environment forms an important part of the new 1992 OSPAR Convention for the Protection of the Marine Environment of the North-East Atlantic that was ratified and entered into force on 25 March 1998. In the ministerial statement at the signing of the Convention it was agreed that the first assessment (Quality Status Report, QSR) for all Convention waters should be produced for the year 2000. To oversee this charge a new Environmental Assessment and Monitoring Committee (ASMO) was established and a junior group under this committee, to implement necessary actions, the Assessment Co-ordination Group (ACG). Because of the wide geographical diversity and varying levels of information available in different parts of the Convention area it was decided to produce five regional reports for: I The Arctic; II The North Sea; III The Celtic seas; IV The Bay of Biscay and Iberian Coast; V The Wider Atlantic, which will be synthesised in a holistic QSR for the year 2000. The report for the North Sea will largely be an update of QSR 1993 and forms the third cycle of a developing management system for the North Sea. This paper will present the procedures that have been adopted to implement the QSRs, and outlines the guidelines that have been developed for their structure, format, design and publication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Migrations between different habitats are key events in the lives of many organisms. Such movements involve annually recurring travel over long distances usually triggered by seasonal changes in the environment. Often, the migration is associated with travel to or from reproduction areas to regions of growth. Young anadromous Atlantic salmon (Salmo salar) emigrate from freshwater nursery areas during spring and early summer to feed and grow in the North Atlantic Ocean. The transition from the freshwater (parr') stage to the migratory stage where they descend streams and enter salt water (smolt') is characterized by morphological, physiological and behavioural changes where the timing of this parr-smolt transition is cued by photoperiod and water temperature. Environmental conditions in the freshwater habitat control the downstream migration and contribute to within- and among-river variation in migratory timing. Moreover, the timing of the freshwater emigration has likely evolved to meet environmental conditions in the ocean as these affect growth and survival of the post-smolts. Using generalized additive mixed-effects modelling, we analysed spatio-temporal variations in the dates of downstream smolt migration in 67 rivers throughout the North Atlantic during the last five decades and found that migrations were earlier in populations in the east than the west. After accounting for this spatial effect, the initiation of the downstream migration among rivers was positively associated with freshwater temperatures, up to about 10 degrees C and levelling off at higher values, and with sea-surface temperatures. Earlier migration occurred when river discharge levels were low but increasing. On average, the initiation of the smolt seaward migration has occurred 2.5days earlier per decade throughout the basin of the North Atlantic. This shift in phenology matches changes in air, river, and ocean temperatures, suggesting that Atlantic salmon emigration is responding to the current global climate changes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oceanographic drivers of marine vertebrate habitat use are poorly understood yet fundamental to our knowledge of marine ecosystem functioning. Here, we use composite front mapping and high-resolution GPS tracking to determine the significance of mesoscale oceanographic fronts as physical drivers of foraging habitat selection in northern gannets Morus bassanus. We tracked 66 breeding gannets from a Celtic Sea colony over 2 years and used residence time to identify area-restricted search (ARS) behaviour. Composite front maps identified thermal and chlorophyll-a mesoscale fronts at two different temporal scales—(i) contemporaneous fronts and (ii) seasonally persistent frontal zones. Using generalized additive models (GAMs), with generalized estimating equations (GEE-GAMs) to account for serial autocorrelation in tracking data, we found that gannets do not adjust their behaviour in response to contemporaneous fronts. However, ARS was more likely to occur within spatially predictable, seasonally persistent frontal zones (GAMs). Our results provide proof of concept that composite front mapping is a useful tool for studying the influence of oceanographic features on animal movements. Moreover, we highlight that frontal persistence is a crucial element of the formation of pelagic foraging hotspots for mobile marine vertebrates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

From January 2011 to December 2013, we constructed a comprehensive pCO2 data set based on voluntary observing ship (VOS) measurements in the western English Channel (WEC). We subsequently estimated surface pCO2 and air–sea CO2 fluxes in northwestern European continental shelf waters using multiple linear regressions (MLRs) from remotely sensed sea surface temperature (SST), chlorophyll a concentration (Chl a), wind speed (WND), photosynthetically active radiation (PAR) and modeled mixed layer depth (MLD). We developed specific MLRs for the seasonally stratified northern WEC (nWEC) and the permanently well-mixed southern WEC (sWEC) and calculated surface pCO2 with uncertainties of 17 and 16 μatm, respectively. We extrapolated the relationships obtained for the WEC based on the 2011–2013 data set (1) temporally over a decade and (2) spatially in the adjacent Celtic and Irish seas (CS and IS), two regions which exhibit hydrographical and biogeochemical characteristics similar to those of WEC waters. We validated these extrapolations with pCO2 data from the SOCAT and LDEO databases and obtained good agreement between modeled and observed data. On an annual scale, seasonally stratified systems acted as a sink of CO2 from the atmosphere of −0.6 ± 0.3, −0.9 ± 0.3 and −0.5 ± 0.3 mol C m−2 yr−1 in the northern Celtic Sea, southern Celtic sea and nWEC, respectively, whereas permanently well-mixed systems acted as source of CO2 to the atmosphere of 0.2 ± 0.2 and 0.3 ± 0.2 mol C m−2 yr−1 in the sWEC and IS, respectively. Air–sea CO2 fluxes showed important inter-annual variability resulting in significant differences in the intensity and/or direction of annual fluxes. We scaled the mean annual fluxes over these provinces for the last decade and obtained the first annual average uptake of −1.11 ± 0.32 Tg C yr−1 for this part of the northwestern European continental shelf. Our study showed that combining VOS data with satellite observations can be a powerful tool to estimate and extrapolate air–sea CO2 fluxes in sparsely sampled area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Shelf Sea Biogeochemistry research programme directly relates to the delivery of the NERC Earth system science theme and aims to provide evidence that supports a number of marine policy areas and statutory requirements, such as the Marine Strategy Framework Directive and Marine and Climate Acts. The shelf seas are highly productive compared to the open ocean, a productivity that underpins more than 90 per cent of global fisheries. Their importance to society extends beyond food production to include issues of biodiversity, carbon cycling and storage, waste disposal, nutrient cycling, recreation and renewable energy resources. The shelf seas have been estimated to be the most valuable biome on Earth, but they are under considerable stress, as a result of anthropogenic nutrient loading, overfishing, habitat disturbance, climate change and other impacts. However, even within the relatively well-studied European shelf seas, fundamental biogeochemical processes are poorly understood. For example: the role of shelf seas in carbon storage; in the global cycles of key nutrients (nitrogen, phosphorus, silicon and iron); and in determining primary and secondary production, and thereby underpinning the future delivery of many other ecosystem services. Improved knowledge of such factors is not only required by marine policymakers; it also has the potential to increase the quality and cost-effectiveness of management decisions at the local, national and international levels under conditions of climate change. The Shelf Sea Biogeochemistry research programme will take a holistic approach to the cycling of nutrients and carbon and the controls on primary and secondary production in UK and European shelf seas, to increase understanding of these processes and their role in wider biogeochemical cycles. It will thereby significantly improve predictive marine biogeochemical and ecosystem models over a range of scales. The scope of the programme includes exchanges with the open ocean (transport on and off the shelf to a depth of around 500m), together with cycling, storage and release processes on the shelf slope, and air-sea exchange of greenhouse gases (carbon dioxide and nitrous oxide). The DY021 cruise is the first of the 2015 Benthic SSB cruises to investigate the 4 main ‘representative’ sites in the Celtic Sea that will represent all the various sediment types found in the whole area, these being Mud, San, Sandy-Mud and Muddy-Sand. The cruise will also carry out complimentary sampling at the Pelagic SSB programme main site called CANDYFLOSS in the central Shelf area in order to better link the Benthic and Pelagic programmes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Regional seas are potentially highly vulnerable to climate change, yet are the most directly societally important regions of the marine environment. The combination of widely varying conditions of mixing, forcing, geography (coastline and bathymetry) and exposure to the open-ocean makes these seas subject to a wide range of physical processes that mediates how large scale climate change impacts on these seas’ ecosystems. In this paper we explore the response of five regional sea areas to potential future climate change, acting via atmospheric, oceanic and terrestrial vectors. These include the Barents Sea, Black Sea, Baltic Sea, North Sea, Celtic Seas, and are contrasted with a region of the Northeast Atlantic. Our aim is to elucidate the controlling dynamical processes and how these vary between and within these seas. We focus on primary production and consider the potential climatic impacts on: long term changes in elemental budgets, seasonal and mesoscale processes that control phytoplankton’s exposure to light and nutrients, and briefly direct temperature response. We draw examples from the MEECE FP7 project and five regional model systems each using a common global Earth System Model as forcing. We consider a common analysis approach, and additional sensitivity experiments. Comparing projections for the end of the 21st century with mean present day conditions, these simulations generally show an increase in seasonal and permanent stratification (where present). However, the first order (low- and mid-latitude) effect in the open ocean projections of increased permanent stratification leading to reduced nutrient levels, and so to reduced primary production, is largely absent, except in the NE Atlantic. Even in the two highly stratified, deep water seas we consider (Black and Baltic Seas) the increase in stratification is not seen as a first order control on primary production. Instead, results show a highly heterogeneous picture of positive and negative change arising from complex combinations of multiple physical drivers, including changes in mixing, circulation and temperature, which act both locally and non-locally through advection.