65 resultados para estuaries


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Measurements describing the intratidal, spring-neap and seasonal variations of fine, cohesive, suspended particulate matter (SPM) concentrations at two sites (Calstock and Halton Quay) within the upper reaches of the Tamar Estuary, UK, are presented. The data were obtained using two, near-bed instrument packages. Correlations of daily-averaged SPM concentrations and fluxes with both runoff and tidal range during the separate deployments often showed a significant dependence on these variables. Where statistically significant, increasing tidal range led to enhanced SPM levels because of resuspension of bed sediments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dinoflagellate Noctiluca scintillans is one of the most important and abundant red tide organisms and it is distributed world-wide. It occurs in two forms. Red Noctiluca is heterotrophic and fills the role of one of the microzooplankton grazers in the foodweb. In contrast, green Noctiluca contains a photosynthetic symbiont Pedinomonas noctilucae (a prasinophyte), but it also feeds on other plankton when the food supply is abundant. In this review, we document the global distribution of these two forms and include the first maps of their global distribution. Red Noctiluca occurs widely in the temperate to sub-tropical coastal regions of the world. It occurs over a wide temperature range of about 10°C to 25°C and at higher salinities (generally not in estuaries). It is particularly abundant in high productivity areas such as upwelling or eutrophic areas where diatoms dominate since they are its preferred food source. Green Noctiluca is much more restricted to a temperature range of 25°C–30°C and mainly occurs in tropical waters of Southeast Asia, Bay of Bengal (east coast of India), in the eastern, western and northern Arabian Sea, the Red Sea, and recently it has become very abundant in the Gulf of Oman. Red and green Noctiluca do overlap in their distribution in the eastern, northern and western Arabian Sea with a seasonal shift from green Noctiluca in the cooler winter convective mixing, higher productivity season, to red Noctiluca in the more oligotrophic warmer summer season.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean acidification influences sediment/water nitrogen fluxes, possibly by impacting on the microbial process of ammonia oxidation. To investigate this further, undisturbed sediment cores collected from Ny Alesund harbour (Svalbard) were incubated with seawater adjusted to CO2 concentrations of 380, 540, 760, 1,120 and 3,000 μatm. DNA and RNA were extracted from the sediment surface after 14 days' exposure and the abundance of bacterial and archaeal ammonia oxidising (amoA) genes and transcripts quantified using quantitative polymerase chain reaction. While there was no change to the abundance of bacterial amoA genes, an increase to 760 μatm pCO2 reduced the abundance of bacterial amoA transcripts by 65 %, and this was accompanied by a shift in the composition of the active community. In contrast, archaeal amoA gene and transcript abundance both doubled at 3,000 μatm, with an increase in species richness also apparent. This suggests that ammonia oxidising bacteria and archaea in marine sediments have different pH optima, and the impact of elevated CO2 on N cycling may be dependent on the relative abundances of these two major microbial groups. Further evidence of a shift in the balance of key N cycling groups was also evident: the abundance of nirS-type denitrifier transcripts decreased alongside bacterial amoA transcripts, indicating that NO3 − produced by bacterial nitrification fuelled denitrification. An increase in the abundance of Planctomycete-specific 16S rRNA, the vastmajority of which grouped with known anammox bacteria, was also apparent at 3,000 μatm pCO2. This could indicate a possible shift from coupled nitrification–denitrification to anammox activity at elevated CO2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Shade plots, simple visual representations of abundance matrices from multivariate species assemblage studies, are shown to be an effective aid in choosing an overall transformation (or other pre-treatment) of quantitative data for long-term use, striking an appropriate balance between dominant and less abundant taxa in ensuing resemblance-based multivariate analyses. Though the exposition is entirely general and applicable to all community studies, detailed illustrations of the comparative power and interpretative possibilities of shade plots are given in the case of two estuarine assemblage studies in south-western Australia: (a) macrobenthos in the upper Swan Estuary over a two-year period covering a highly significant precipitation event for the Perth area; and (b) a wide-scale spatial study of the nearshore fish fauna from five divergent estuaries. The utility of transformations of intermediate severity is again demonstrated and, with greater novelty, the potential importance seen of further mild transformation of all data after differential down-weighting (dispersion weighting) of spatially clumped' or schooled' species. Among the new techniques utilized is a two-way form of the RELATE test, which demonstrates linking of assemblage structure (fish) to continuous environmental variables (water quality), having removed a categorical factor (estuary differences). Re-orderings of sample and species axes in the associated shade plots are seen to provide transparent explanations at the species level for such continuous multivariate patterns.