52 resultados para Monasteries, Orthodox Eastern
Resumo:
Neocalanus plumchrus/flemingeri copepods make up a large proportion of spring mesozooplankton biomass and are a valuable nutritional source for many higher trophic levels. Copepodites through to sub-adult stage are present in surface waters for a relatively short period of time each spring, and the date of maximum biomass has been calculated as the date when 50% of the population were at the sub-adult, CV stage. This index allows quite a precise date to be calculated from relatively infrequent sampling and interannual comparisons between 1957 and 2004 have demonstrated that the timing of peak abundance is significantly advanced in warmer years. However, recent data from the Continuous Plankton Recorder survey, which samples the surface NE Pacific more frequently during spring, has found that maximum numbers of CV copepodites occur after the 50% point is reached so that maximum biomass occurs some weeks later than predicted by this index (although comparisons between years show that the magnitude of the timing shift is similar). Comparisons with depth-stratified profiles from the BIONESS show that this is not just due to single-depth near-surface sampling by the CPR. We speculate on the cause of this change which could be related to the width of the cohort (which appears to now be narrower, at least in warm years) or the length of time that the CV stage needs to spend in the surface accumulating lipid before beginning diapause. A narrower cohort has implications for predators who will have less time to take advantage of this food source.
Resumo:
This review examines interregional linkages and gives an overview perspective on marine ecosystem functioning in the north-eastern Atlantic. It is based on three of the 'systems' considered by the European Network of Excellence for Ocean Ecosystems Analysis (EUR-OC EANS was established in 2004 under the European Framework VI funding programme to promote integration of marine ecological research within Europe), the Arctic and Nordic Seas, North Atlantic shelf seas and North Atlantic. The three systems share common open boundaries and the transport of water, heat, nutrients and particulates across these boundaries modifies local processes. Consistent with the EUR-OC EANS concept of 'end-to-end' analyses of marine food webs, the review takes an integrated approach linking ocean physics, lower trophic levels and working up the food web to top predators such as marine mammals. We begin with an overview of the regions focusing on the major physical patterns and their implications for the microbial community, phytoplankton, zooplankton, fish and top predators. Human-induced links between the regional systems are then considered and finally possible changes in the regional linkages over the next century are discussed. Because of the scale of potential impacts of climate change, this issue is considered in a separate section. The review demonstrates that the functioning of the ecosystems in each of the regions cannot be considered in isolation and the role of the atmosphere and ocean currents in linking the North Atlantic Ocean, North Atlantic shelf seas and the Arctic and Nordic Seas must be taken into account. Studying the North Atlantic and associated shelf seas as an integrated 'basin-scale' system will be a key challenge for the early twenty-first century. This requires a multinational approach that should lead to improved ecosystem-based approaches to conservation of natural resources, the maintenance of biodiversity, and a better understanding of the key role of the north-eastern Atlantic in the global carbon cycle.
Resumo:
Pronounced changes in fauna, extending from the English Channel in the south to the Barents Sea in the north-east and off Greenland in the north-west, have occurred in the late 1920s, the late 1960s and again in the late 1990s. We attribute these events to exchanges of subarctic and subtropical water masses in the north-eastern North Atlantic Ocean, associated with changes in the strength and extent of the subpolar gyre. These exchanges lead to variations in the influence exerted by the subarctic or Lusitanian biomes on the intermediate faunistic zone in the north-eastern Atlantic. This strong and persistent bottom-up bio-physical link is demonstrated using a numerical ocean general circulation model and data on four trophically connected levels in the food chain – phytoplankton, zooplankton, blue whiting, and pilot whales. The plankton data give a unique basin-scale depiction of these changes, and a long pilot whale record from the Faroe Islands offers an exceptional temporal perspective over three centuries. Recent advances in simulating the dynamics of the subpolar gyre suggests a potential for predicting the distribution of the main faunistic zones in the north-eastern Atlantic a few years into the future, which might facilitate a more rational management of the commercially important fisheries in this region.
Resumo:
Analysis of benthic macroinvertebrate samples at a higher taxonomic level than species, e.g. family, potentially provides a more cost-effective protocol for environmental impact assessments and monitoring as it requires less time, funds and taxonomic expertise. Using the AMBI database, species ecological group scores are shown to be coherent within families. Faunal data from a wide range of environmental impact scenarios in the north-eastern Atlantic demonstrate that AMBI, calculated from mean values for families, exhibits a strong linear relationship with species-level AMBI, the correlation improving by using square-root transformed rather than untransformed abundances. In many regions of the world, however, the sensitivity of benthic macroinvertebrates to environmental perturbations is unknown, precluding the use of AMBI for environmental assessments. Yet the families are essentially the same as in the AMBI database. The utility of family-level AMBI is tested using data for four south-western Australian estuaries previously subjected to environmental quality assessments, but where only 17 species of the 144 taxa are included in the AMBI database. Although family-level AMBI scores reflect differences in environmental quality spatially and temporally within an estuary, they do not follow variations in environmental quality among estuaries. Indeed, south-western Australia estuaries are numerically dominated by families with high AMBI scores, probably due to the detrimental effects of natural accumulations of organic material in estuaries with long residence times. As taxonomic distinctness follows trends in environmental quality among estuaries, as well as temporally and spatially within a system, it provides an appropriate substitute for assessing the 'heath' of microtidal estuaries.
Resumo:
Due to the impacts of natural processes and anthropogenic activities, different coastal wetlands are faced with variable patterns of heavy metal contamination. It is important to quantify the contributions of pollutant sources, in order to adopt appropriate protection measures for local ecosystems. The aim of this research was to compare the heavy metal contamination patterns of two contrasting coastal wetlands in eastern China. In addition, the contributions from various metal sources were identified and quantified, and influencing factors, such as the role of the plant Spartina alterniflora, were evaluated. Materials and methods Sediment samples were taken from two coastal wetlands (plain-type tidal flat at the Rudong (RD) wetland vs embayment-type tidal flat at Luoyuan Bay (LY)) to measure the content of Al, Fe, Co, Cr, Cu, Mn, Mo, Ni, Sr, Zn, Pb, Cd, and As. Inductively coupled plasma atomic emission spectrometry, flame atomic absorption spectrometry, and atomic fluorescence spectrometry methods were used for metal detection. Meanwhile, the enrichment factor and geoaccumulation index were applied to assess the pollution level. Principle component analysis and receptor modeling were used to quantify the sources of heavy metals. Results and discussion Marked differences in metal distribution patterns between the two systems were present. Metal contents in LY were higher than those in RD, except for Sr and Mo. The growth status of S. alterniflora influenced metal accumulations in RD, i.e., heavy metals were more easily adsorbed in the sediment in the following sequence: Cu > Cd > Zn > Cr > Al > Pb ≥ Ni ≥ Co > Fe > Sr ≥ Mn > As > Mo as a result of the presence and size of the vegetation. However, this phenomenon was not observed in LY. A higher potential ecological risk was associated with LY, compared with RD, except for Mo. Based on a receptor model output, sedimentary heavy metal contents at RD were jointly influenced by natural sedimentary processes and anthropogenic activities, whereas they were dominated by anthropogenic activities at LY. Conclusions A combination of geochemical analysis and modeling approaches was used to quantify the different types of natural and anthropogenic contributions to heavy metal contamination, which is useful for pollution assessments. The application of this approach reveals that natural and anthropogenic processes have different influences on the delivery and retention of metals at the two contrasting coastal wetlands. In addition, the presence and size of S. alterniflora can influence the level of metal contamination in sedimentary environments.
Resumo:
The biogeography and ecology of the species of Chthamalus present on the west coast of America are described, using data from 51 localities from Alaska to Panama, together with their zonation on the shore with respect to that of other barnacles. The species present were C. dalli, Pilsbry 1916, C. fissus, Darwin, 1854, C. anisopoma Pilsbry 1916 and four species in the C. panamensis complex. The latter are C. panamensis Pilsbry, 1916, C. hedgecocki, Pitombo & Burton, 2007, C. alani nom. nov. (formerly C. southwardorum Pitombo & Burton, 2007) and C. newmani sp. nov.). These four species were initially separated by enzyme electrophoresis. They could only be partially separated by DNA bar coding but may be separated using morphological characters.