54 resultados para Increased Disturbance Hypothesis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human activities are fundamentally altering the chemistry of the world's oceans. Ocean acidification (OA) is occurring against a background of warming and an increasing occurrence of disease outbreaks, posing a significant threat to marine organisms, communities, and ecosystems. In the current study, (1)H NMR spectroscopy was used to investigate the response of the blue mussel, Mytilus edulis, to a 90-day exposure to reduced seawater pH and increased temperature, followed by a subsequent pathogenic challenge. Analysis of the metabolome revealed significant differences between male and female organisms. Furthermore, males and females are shown to respond differently to environmental stress. While males were significantly affected by reduced seawater pH, increased temperature, and a bacterial challenge, it was only a reduction in seawater pH that impacted females. Despite impacting males and females differently, stressors seem to act via a generalized stress response impacting both energy metabolism and osmotic balance in both sexes. This study therefore has important implications for the interpretation of metabolomic data in mussels, as well as the impact of environmental stress in marine invertebrates in general.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean acidification influences sediment/water nitrogen fluxes, possibly by impacting on the microbial process of ammonia oxidation. To investigate this further, undisturbed sediment cores collected from Ny Alesund harbour (Svalbard) were incubated with seawater adjusted to CO2 concentrations of 380, 540, 760, 1,120 and 3,000 μatm. DNA and RNA were extracted from the sediment surface after 14 days' exposure and the abundance of bacterial and archaeal ammonia oxidising (amoA) genes and transcripts quantified using quantitative polymerase chain reaction. While there was no change to the abundance of bacterial amoA genes, an increase to 760 μatm pCO2 reduced the abundance of bacterial amoA transcripts by 65 %, and this was accompanied by a shift in the composition of the active community. In contrast, archaeal amoA gene and transcript abundance both doubled at 3,000 μatm, with an increase in species richness also apparent. This suggests that ammonia oxidising bacteria and archaea in marine sediments have different pH optima, and the impact of elevated CO2 on N cycling may be dependent on the relative abundances of these two major microbial groups. Further evidence of a shift in the balance of key N cycling groups was also evident: the abundance of nirS-type denitrifier transcripts decreased alongside bacterial amoA transcripts, indicating that NO3 − produced by bacterial nitrification fuelled denitrification. An increase in the abundance of Planctomycete-specific 16S rRNA, the vastmajority of which grouped with known anammox bacteria, was also apparent at 3,000 μatm pCO2. This could indicate a possible shift from coupled nitrification–denitrification to anammox activity at elevated CO2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mussels tolerant to seawater pH's that are projected to occur by 2300 due to ocean acidification.•Exposure to pH 6.50 reduced mussel immune response, yet in the absence of a pathogen.•Subsequent pathogenic challenge led to a reversal of immune suppression at pH 6.50.•Study highlights the importance of undertaking multiple stressor exposures.•Shows a need to consider physiological trade-offs and measure responses functionally

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bacterial communities associated with healthy and diseased colonies of the cold-water gorgonian coral Eunicella verrucosa at three sites off the south-west coast of England were compared using denaturing gradient gel electrophoresis (DGGE) and clone libraries. Significant differences in community structure between healthy and diseased samples were discovered, as were differences in the level of disturbance to these communities at each site; this correlated with depth and sediment load. The majority of cloned sequences from healthy coral tissue affiliated with the Gammaproteobacteria. The stability of the bacterial community and dominance of specific genera found across visibly healthy colonies suggest the presence of a specific microbial community. Affiliations included a high proportion of Endozoicomonas sequences, which were most similar to sequences found in tropical corals. This genus has been found in a number of invertebrates and is suggested to have a role in coral health and in the metabolisation of dimethylsulfoniopropionate (DMSP) produced by zooxanthellae. However, screening of colonies for the presence of zooxanthellae produced a negative result. Diseased colonies showed a decrease in affiliated clones and an increase in clones related to potentially harmful/transient microorganisms but no increase in a particular pathogen. This study demonstrates that a better understanding of these bacterial communities, the factors that affect them and their role in coral health and disease will be of critical importance in predicting future threats to temperate gorgonian communities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have shown that the bioturbating polychaete Hediste (Nereis) diversicolor can affect the composition of bacterial communities in oil-contaminated sediments, but have not considered diversity specifically within bioturbator burrows or the impact on microbial eukaryotes. We tested the hypothesis that H. diversicolor burrows harbour different eukaryotic and bacterial communities compared with un-bioturbated sediment, and that bioturbation stimulates oil degradation. Oil-contaminated sediment was incubated with or without H. diversicolor for 30 days, after which sediment un-affected by H. diversicolor and burrow DNA/RNA samples were analysed using quantitative reverse transcription PCR (Q-RT-PCR) and high-throughput sequencing. Fungi dominated both burrow and un-bioturbated sediment sequence libraries; however, there was significant enrichment of bacterivorous protists and nematodes in the burrows. There were also significant differences between the bacterial communities in burrows compared with un-bioturbated sediment. Increased activity and relative abundance of aerobic hydrocarbon-degrading bacteria in the burrows coincided with the significant reduction in hydrocarbon concentration in the bioturbated sediment. This study represents the first detailed assessment of the effect of bioturbation on total microbial communities in oil-contaminated sediments. In addition, it further shows that bioturbation is a significant factor in determining microbial diversity within polluted sediments and plays an important role in stimulating bioremediation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Joint Nature Conservation Committee (JNCC) commissioned this project to generate an improved understanding of the sensitivities of blue mussel (Mytilus edulis) beds, found in UK waters, to pressures associated with human activities in the marine environment. The work will provide an evidence base that will facilitate and support management advice for Marine Protected Areas, development of UK marine monitoring and assessment, and conservation advice to offshore marine industries. Blue mussel beds are identified as a Habitat of Principle Importance (HPI) under the Natural Environment and Rural Communities (NERC) Act 2006, as a Priority Marine Feature (PMF) under the Marine (Scotland) Act 2010, and included on the OSPAR (Annex V) list of threatened and declining species and habitats. The purpose of this project was to produce sensitivity assessments for the blue mussel biotopes included within the HPI, PMF and OSPAR habitat definitions, and clearly document the supporting evidence behind the assessments and any differences between them. A total of 20 pressures falling in five categories - biological, hydrological, physical damage, physical loss, and pollution and other chemical changes - were assessed in this report. The review examined seven blue mussel bed biotopes found on littoral sediment and sublittoral rock and sediment. The assessments were based on the sensitivity of M. edulis rather than associated species, as M. edulis was considered the most important characteristic species in blue mussel beds. To develop each sensitivity assessment, the resistance and resilience of the key elements are assessed against the pressure benchmark using the available evidence gathered in this review. The benchmarks were designed to provide a ‘standard’ level of pressure against which to assess sensitivity. Blue mussel beds were highly sensitive to a few human activities: • introduction or spread of non-indigenous species (NIS); • habitat structure changes - removal of substratum (extraction); and • physical loss (to land or freshwater habitat). Physical loss of habitat and removal of substratum are particularly damaging pressures, while the sensitivity of blue mussel beds to non-indigenous species depended on the species assessed. Crepidula fornicata and Crassostrea gigas both had the potential to outcompete and replace mussel beds, so resulted in a high sensitivity assessment. Mytilus spp. populations are considered to have a strong ability to recover from environmental disturbance. A good annual recruitment may allow a bed to recovery rapidly, though this cannot always be expected due to the sporadic nature of M. edulis recruitment. Therefore, blue mussel beds were considered to have a 'Medium' resilience (recovery within 2-10 years). As a result, even where the removal or loss of proportion of a mussel bed was expected due to a pressure, a sensitivity of 'Medium' was reported. Hence, most of the sensitivities reported were 'Medium'. It was noted, however, that the recovery rates of blue mussel beds were reported to be anywhere between two years to several decades. In addition, M. edulis is considered very tolerant of a range of physical and chemical conditions. As a result, blue mussel beds were considered to be 'Not sensitive' to changes in temperature, salinity, de-oxygenation, nutrient and organic enrichment, and substratum type, at the benchmark level of pressure. The report found that no distinct differences in overall sensitivity exist between the HPI, PMF and OSPAR definitions. Individual biotopes do however have different sensitivities to pressures, and the OSPAR definition only includes blue mussel beds on sediment. These differences were determined by the position of the habitat on the shore and the sediment type. For example, the infralittoral rock biotope (A3.361) was unlikely to be exposed to pressures that affect sediments. However in the case of increased water flow, mixed sediment biotopes were considered more stable and ‘Not sensitive’ (at the benchmark level) while the remaining biotopes were likely to be affected.

Using a clearly documented, evidence-based approach to create sensitivity assessments allows the assessment basis and any subsequent decision making or management plans to be readily communicated, transparent and justifiable. The assessments can be replicated and updated where new evidence becomes available ensuring the longevity of the sensitivity assessment tool. For every pressure where sensitivity was previously assessed as a range of scores in MB0102, the assessments made by the evidence review have supported one of the MB0102 assessments. The evidence review has reduced the uncertainty around assessments previously undertaken in the MB0102 project (Tillin et al., 2010) by assigning a single sensitivity score to the pressures as opposed to a range. Finally, as blue mussel bed habitats also contribute to ecosystem function and the delivery of ecosystem services, understanding the sensitivity of these biotopes may also support assessment and management in regard to these. Whatever objective measures are applied to data to assess sensitivity, the final sensitivity assessment is indicative. The evidence, the benchmarks, the confidence in the assessments and the limitations of the process, require a sense-check by experienced marine ecologists before the outcome is used in management decisions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the early part of the 20th Century the impact of a range of anthropogenic activities in our coastal seas has steadily increased. The effect of such activities is a major cause for concern but in the benthic environment few studies exist that date back more than a few decades. Hence understanding long term changes is a challenge. Within this study we utilized a historic benthic dataset and resurveyed an area west of Eddystone reef in the English Channel previously investigated 112 years ago. The aim of the present work was to describe the current benthic community structure and investigate potential differences between 1895 and 2007. For each of the four major phyla investigated (Polychaeta, Crustacea, Mollusca and Echinodermata), multivariate community analysis showed significant differences between the historic and contemporary surveys. Echinoderm diversity showed a clear reduction between 1895 and 2007. The sea urchins Echinus esculentus, Spatangus purpureus, and Psammechinus miliaris and large star-fish Marthasterias glacialis showed reductions in abundance, in some cases being entirely absent from the survey area in 2007. Polychaetes showed a shift from tubiculous species to small errant and predatory species such as Glycera, Nephtys, and Lumbrineris spp. Within the group Mollusca large species such as Pecten maximus and Laevicardium crassum decreased in abundance while small species increased. Crustaceans in 1895 were dominated by crab species which were present in similar abundances in 2007, but, the order Amphipoda appeared to show a significant increase. While some of the differences observed could stem from differences in methodologies between the surveys, in particular increases of small cryptic species, the loss of large conspicuous species was judged to be genuine. The study area is an important beam trawling and scallop dredging ground; the differences observed are concomitant with changes generally associated with disturbance from demersal fishing activities such as these.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a warming climate, differential shifts in the seasonal timing of predators and prey have been suggested to lead to trophic ‘‘mismatches’’ that decouple primary, secondary and tertiary production. We tested this hypothesis using a 25-year time-series of weekly sampling at the Plymouth L4 site, comparing 57 plankton taxa spanning 4 trophic levels. During warm years, there was a weak tendency for earlier timings of spring taxa and later timings of autumn taxa. While this is in line with many previous findings, numerous exceptions existed and only a few taxa (e.g. Gyrodinium spp., Pseudocalanus elongatus, and Acartia clausi) showed consistent, strong evidence for temperature-related timing shifts, revealed by all 4 of the timing indices that we used. Also, the calculated offsets in timing i.e. ‘‘mismatches’’) between predator and prey were no greater in extreme warm or cold years than during more average years. Further, the magnitude of these offsets had no effect on the ‘‘success’’ of the predator, in terms of their annual mean abundance or egg production rates. Instead numerous other factors override, including: inter-annual variability in food quantity, high food baseline levels, turnover rates and prolonged seasonal availability, allowing extended periods of production. Furthermore many taxa, notably meroplankton, increased well before the spring bloom. While theoretically a chronic mismatch, this likely reflects trade-offs for example in predation avoidance. Various gelatinous taxa (Phaeocystis, Noctiluca, ctenophores, appendicularians, medusae) may have reduced these predation constraints, with variable, explosive population outbursts likely responding to improved conditions. The match–mismatch hypothesis may apply for highly seasonal, pulsed systems or specialist feeders, but we suggest that the concept is being over-extended to other marine systems where multiple factors compensate.