82 resultados para Gobal warming


Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is an accumulating body of evidence to suggest that many marine ecosystems in the North Atlantic, both physically and biologically are responding to changes in regional climate caused predominately by the warming of air and sea surface temperatures (SST) and to a varying degree by the modification of oceanic currents, precipitation regimes and wind patterns. The biological manifestations of rising SST and oceanographic changes have variously taken the form of biogeographical, phenological, physiological and community changes. For example, during the last 40 years there has been a northerly movement of warmer water plankton by 10 degree latitude in the north-east Atlantic and a similar retreat of colder water plankton to the north. This geographical movement is much more pronounced than any documented terrestrial study, presumably due to advective processes playing an important role. Other research has shown that the plankton community in the North Sea has responded to changes in SST by adjusting their seasonality (in some cases a shift in seasonal cycles of over six weeks has been detected), but more importantly the response to climate warming varied between different functional groups and trophic levels, leading to mismatch. Therefore, while it has been documented that marine ecosystems in certain regions of the Atlantic have undergone some conspicuous changes over the last few decades it is not known whether this is a pan-oceanic homogenous response. Using these two most prominent responses and/or indicative signals of pelagic ecosystems to hydro-climatic change, changes in species phenology and the biogeographical movement of populations, we attempt to identify vulnerable regional areas in terms of particularly rapid and marked change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Against the backdrop of warming of the Northern Hemisphere it has recently been acknowledged that North Atlantic temperature changes undergo considerable variability over multidecadal periods. The leading component of natural low-frequency temperature variability has been termed the Atlantic Multidecadal Oscillation (AMO). Presently, correlative studies on the biological impact of the AMO on marine ecosystems over the duration of a whole AMO cycle (~60 years) is largely unknown due to the rarity of continuously sustained biological observations at the same time period. To test whether there is multidecadal cyclic behaviour in biological time-series in the North Atlantic we used one of the world's longest continuously sustained marine biological time-series in oceanic waters, long-term fisheries data and historical records over the last century and beyond. Our findings suggest that the AMO is far from a trivial presence against the backdrop of continued temperature warming in the North Atlantic and accounts for the second most important macro-trend in North Atlantic plankton records; responsible for habitat switching (abrupt ecosystem/regime shifts) over multidecadal scales and influences the fortunes of various fisheries over many centuries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the last few decades, global warming has accelerated both the rate and magnitude of changes observed in many functional units of the Earth System. In this context, plankton are sentinel organisms because they are sensitive to subtle levels of changes in temperature and might help in identifying the current effects of climate change on pelagic ecosystems. In this paper, we performed a comparative approach in two regions of the North Atlantic (i.e. the Northeast Atlantic and the North Sea) to explore the relationships between changes in marine plankton, the regional physico-chemical environment and large-scale hydro-climatic forcing using four key indices: the North Atlantic Oscillation (NAO), the Atlantic Multidecadal Oscillation (AMO), the East Atlantic (EA) pattern and Northern Hemisphere Temperature (NHT) anomalies. Our analyses suggest that long-term changes in the states of the two ecosystems were synchronous and correlated to the same large-scale hydro-climatic variables: NHT anomalies, the AMO and to a lesser extent the EA pattern. No significant correlation was found between long-term ecosystem modifications and the state of the NAO. Our results suggest that the effect of climate on these ecosystems has mainly occurred in both regions through the modulation of the thermal regime.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During recent decades, historically unprecedented changes have been observed in the Arctic as climate warming has increased precipitation, river discharge, and glacial as well as sea-ice melting. Additionally, shifts in the Arctic's atmospheric pressure field have altered surface winds, ocean circulation, and freshwater storage in the Beaufort Gyre. These processes have resulted in variable patterns of freshwater export from the Arctic Ocean, including the emergence of great salinity anomalies propagating throughout the North Atlantic. Here, we link these variable patterns of freshwater export from the Arctic Ocean to the regime shifts observed in Northwest Atlantic shelf ecosystems. Specifically, we hypothesize that the corresponding salinity anomalies, both negative and positive, alter the timing and extent of water-column stratification, thereby impacting the production and seasonal cycles of phytoplankton, zooplankton, and higher-trophic-level consumers. Should this hypothesis hold up to critical evaluation, it has the potential to fundamentally alter our current understanding of the processes forcing the dynamics of Northwest Atlantic shelf ecosystems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The average spatial distribution and annual abundance cycle are described for the copepod Temora longicornis from samples collected on broadscale surveys (1977-2006) and along continuous plankton recorder transects (1961-2006) of the US Northeast continental shelf ecosystem. After its annual low in winter, T. longicornis abundance begins to increase in coastal waters with the northern progression of spring conditions. Annual maximum shelf concentrations were found in the more southern inshore waters of the region during the summer months. Abundance throughout most of the ecosystem increased sharply in the early 1990s and remained high through 2001. During this period, the copepod became more numerous and widespread in offshore shelf waters. Abundance declined to approximately average levels in 2002 for the remainder of the time series, but its extended offshore range remained intact. Correlation analysis found that the copepods interannual abundance variability had a significant negative relationship with surface salinity anomalies throughout the ecosystem, with higher correlations found in the northernmost subareas. Temora longicornis abundance in the ecosystem's southernmost subarea (Middle Atlantic Bight) did not increase in the 1990s and was found to be negatively correlated to surface temperature, indicating that continued global warming could adversely impact the copepods annual abundance cycle in this region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Continuous Plankton Recorder (CPR) survey has been sampling plankton in the North Sea since 1931. However the identification of the larval and juvenile fish taken in the survey has not been a part of the routine analysis of the samples. Specialist analysis of the fish was carried out between 1948 and the early 1980s but the data were available as hard copy only. As part of MarBEF, data on >60 taxa from 1948 to 1972 have been entered on a database which is now linked to EUROBIS to show the biogeographical information and the data are available for general research. Examples of the data are shown. These data provide a background on the variability of fish stocks before the recent period of rapid warming and in some cases before significant fisheries developed. Data for subsequent years will be made available as possible and work is now underway to bring the analysis up to date. This will provide time series over six decades.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The consequences for pelagic communities of warming trends in mid and high latitude ocean regions could be substantial, but their magnitude and trajectory are not yet known. Environmental changes predicted by climate models (and beginning to be confirmed by observations) include warming and freshening of the upper ocean and reduction in the extent and duration of ice cover. One way to evaluate response scenarios is by comparing how "similar" zooplankton communities have differed among years and/or locations with differing temperature. The subarctic Pacific is a strong candidate for such comparisons, because the same mix of zooplankton species dominates over a wide range of temperature climatologies, and observations have spanned substantial temperature variability at interannual-to-decadal time scales. In this paper, we review and extend copepod abundance and phenology time series from net tow and Continuous Plankton Recorder surveys in the subarctic Northeast Pacific. The two strongest responses we have observed are latitudinal shifts in centers of abundance of many species (poleward under warm conditions), and changes in the life cycle timing of Neocalanus plumchrus in both oceanic and coastal regions (earlier by several weeks in warm years and at warmer locations). These zooplankton data, plus indices of higher trophic level responses such as reproduction, growth and survival of pelagic fish and seabirds, are all moderately-to-strongly intercorrelated (vertical bar r vertical bar = 0.25-0.8) with indices of local and basin-scale temperature anomalies. A principal components analysis of the normalized anomaly time series from 1979 to 2004 shows that a single "warm-and-low-productivity" vs. "cool-and-high-productivity" component axis accounts for over half of the variance/covariance. Prior to 1990, the scores for this component were negative ("cool" and "productive") or near zero except positive in the El Nino years 1983 and 1987. The scores were strongly and increasingly positive ("warm" and "low productivity") from 1992 to 1998; negative from 1999 to 2002; and again increasingly positive from 2003-present. We suggest that, in strongly seasonal environments, anomalously high temperature may provide misleading environmental cues that contribute to timing mismatch between life history events and the more-nearly-fixed seasonality of insolation, stratification, and food supply. Crown Copyright (c) 2007 Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Weekly measurements of mesozooplankton (>76 mu m) and hydrographic parameters have been carried out since 1984 in the List Tidal Basin (northern Wadden Sea). Monthly water temperature significantly increased by 0.04 degrees C year. The largest increase by 3 degrees C in 22 years occurred in September, implying, an extension of the warm summer period. Mean annual copepod abundance and length of copepod season correlated significantly with mean temperature from January to May. Except for an increasing Acartia sp. abundance during spring (April-May), no longterm trends in copepod abundance were observed. The percentage of carnivorous zooplankton increased significantly since 1984 mainly due to a sudden increase in the cyclopoid copepod Oithona similis in 1997. We expect that global warming will lead to a longer copepod season and higher copepod abundances in the northern Wadden Sea.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Environmentally induced change appears to be impacting the recruitment of North Sea herring (Clupea harengus). Despite simultaneously having a large adult population, historically low exploitation, and Marine Stewardship Council accreditation (implying sustainability), there have been an unprecedented 6 sequential years of poor juvenile production (recruitment). Analysis suggests that the poor recruitment arises during the larval overwintering phase, with recent survival rates greatly reduced. Contemporary warming of the North Sea has caused significant changes in the plankton community, and a recently identified regime shift around 2000 shows close temporal agreement with the reduced larval survival. It is, therefore, possible that we are observing the first consequences of this planktonic change for higher trophic levels. There is no indication of a recovery in recruitment in the short term. Fishing mortality is currently outside the agreed management plan, and forecasts show a high risk of the stock moving outside safe biological limits soon, potentially precipitating another collapse of the stock. However, bringing the realized fishing mortality back in line with the management plan would likely alleviate the problem. This illustrates again that recruitment is influenced by more than just spawning-stock biomass, and that changes in other factors can be of equal, or even greater, importance. In such dynamically changing environments, recent management success does not necessarily guarantee future sustainability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report evidences that the zooplankton biomass in the tropical Atlantic has declined with an almost 10-fold drop from the 1950s to 2000. The results of the multiple regression analysis showed that the decline in zooplankton biomass was positively related to the NAO-index and to phosphate concentration. We also found that the depth of the thermocline has decreased over the period of our investigation. Thus, the decline we report in zooplankton biomass may be related to the combined effect of two phenomena driven by global temperature increase: (1) the widening of the distributional range of tropical species due to the expansion of the ‘tropical belt’ and (2) a decrease in primary production resulting from the thinning of the thermocline. The decline of zooplankton biomass we report suggests that global warming of the ocean may be altering tropical food webs, and through them, it may also indirectly impact tropical oceans biogeochemical cycles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zooplankton play a key role in climate change through the transfer of large quantities of CO sub(2) to the deep ocean by a process known as the biological pump. Plankton composition is crucial as associated mineral material facilitates sinking of carbon rich debris and some taxa package faecal and detrital material. Ocean acidification may impact calcareous groups. Zooplankton have also been shown to be highly sensitive indicators of environmental change. Results will be presented to show that ocean temperature, circulation and planktonic ecosystems (using data from the Continuous Plankton Recorder, CPR survey) in the North Atlantic are changing rapidly in concert and that there is evidence to suggest that the changes are an ocean wide response to global warming with potential feedback effects. Given the importance of the oceans to the carbon cycle, even a minor change in the flux of carbon to the deep ocean would have a big impact increasing growth of atmospheric CO sub(2). We have virtually no understanding of the spatial and temporal variability in the efficiency of the biological pump for most of the world's ocean. Establishing new plankton monitoring programmes backed up by appropriate research to help understand processes is needed to address this gap in knowledge. There is little doubt within a global change context and the future of mankind that a potential acceleration in the growth of atmospheric carbon due to a reduction in the efficiency of the biological pump is a key issue for future research in zooplankton ecology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oceans have shown a recent rapid and accelerating rise in temperature with, given the close link between temperature and marine organisms, pronounced effects on ecosystems. Here we describe for the first time a globally synchronous pattern of pulsed short period (�1 year long) emanations of warm sea surface temperature anomalies from tropical seas towards the poles on the shelf/slope with an intensification of the warming after the 1976/1977, 1986/1987 and 1997/1998 El Nin˜os. On the eastern margins of continents the anomalies propagate towards the poles in part by largely baroclinic boundary currents, reinforced by regional atmospheric warming. The processes contributing to the less continuous warm anomalies on western margins are linked to the transfer of warmth from adjacent western boundary currents. These climate induced events show a close parallelism with the timing of ecosystem changes in shelf seas, important for fisheries and ecosystem services, and melting of sea-ice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oceans play a key role in climate regulation especially in part buffering (neutralising) the effects of increasing levels of greenhouse gases in the atmosphere and rising global temperatures. This chapter examines how the regulatory processes performed by the oceans alter as a response to climate change and assesses the extent to which positive feedbacks from the ocean may exacerbate climate change. There is clear evidence for rapid change in the oceans. As the main heat store for the world there has been an accelerating change in sea temperatures over the last few decades, which has contributed to rising sea‐level. The oceans are also the main store of carbon dioxide (CO2), and are estimated to have taken up ∼40% of anthropogenic-sourced CO2 from the atmosphere since the beginning of the industrial revolution. A proportion of the carbon uptake is exported via the four ocean ‘carbon pumps’ (Solubility, Biological, Continental Shelf and Carbonate Counter) to the deep ocean reservoir. Increases in sea temperature and changing planktonic systems and ocean currents may lead to a reduction in the uptake of CO2 by the ocean; some evidence suggests a suppression of parts of the marine carbon sink is already underway. While the oceans have buffered climate change through the uptake of CO2 produced by fossil fuel burning this has already had an impact on ocean chemistry through ocean acidification and will continue to do so. Feedbacks to climate change from acidification may result from expected impacts on marine organisms (especially corals and calcareous plankton), ecosystems and biogeochemical cycles. The polar regions of the world are showing the most rapid responses to climate change. As a result of a strong ice–ocean influence, small changes in temperature, salinity and ice cover may trigger large and sudden changes in regional climate with potential downstream feedbacks to the climate of the rest of the world. A warming Arctic Ocean may lead to further releases of the potent greenhouse gas methane from hydrates and permafrost. The Southern Ocean plays a critical role in driving, modifying and regulating global climate change via the carbon cycle and through its impact on adjacent Antarctica. The Antarctic Peninsula has shown some of the most rapid rises in atmospheric and oceanic temperature in the world, with an associated retreat of the majority of glaciers. Parts of the West Antarctic ice sheet are deflating rapidly, very likely due to a change in the flux of oceanic heat to the undersides of the floating ice shelves. The final section on modelling feedbacks from the ocean to climate change identifies limitations and priorities for model development and associated observations. Considering the importance of the oceans to climate change and our limited understanding of climate-related ocean processes, our ability to measure the changes that are taking place are conspicuously inadequate. The chapter highlights the need for a comprehensive, adequately funded and globally extensive ocean observing system to be implemented and sustained as a high priority. Unless feedbacks from the oceans to climate change are adequately included in climate change models, it is possible that the mitigation actions needed to stabilise CO2 and limit temperature rise over the next century will be underestimated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Continuous Plankton Recorder survey has monitored plankton in the Northwest Atlantic at monthly intervals since 1962, with an interegnum between 1978 and 1990. In May 1999, large numbers of the Pacific diatom Neodenticula seminae were found in Continuous Plankton Recorder (CPR) samples in the Labrador Sea as the first record in the North Atlantic for more than 800 000 years. The event coincided with modifications in Arctic hydrography and circulation, increased flows of Pacific water into the Northwest Atlantic and in the previous year the exceptional occurrence of extensive ice-free water to the North of Canada. These observations indicate that N. seminae was carried in a pulse of Pacific water in 1998/early 1999 via the Canadian Arctic Archipelago and/or Fram Strait. The species occurred previously in the North Atlantic during the Pleistocene from similar to 1.2 to similar to 0.8 Ma as recorded in deep sea sediment cores. The reappearance of N. seminae in the North Atlantic is an indicator of the scale and speed of changes that are taking place in the Arctic and North Atlantic oceans as a consequence of regional climate warming. Because of the unusual nature of the event it appears that a threshold has been passed, marking a change in the circulation between the North Pacific and North Atlantic Oceans via the Arctic. Trans-Arctic migrations from the Pacific into the Atlantic are likely to occur increasingly over the next 100 years as Arctic ice continues to melt affecting Atlantic biodiversity and the biological pump with consequent feedbacks to the carbon cycle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although the physical and chemical principles that explain the warming of the Earth’s system resulting from emissions of CO2 and other greenhouse gases were understood at the end of the 19th century (Tyndall, 1861; Arrhenius, 1896) and at the beginning of the 20th century (Callendar, 1938), it was almost 100 years later, in the mid‐1980s, before it was realized that these processes were contributing to a rapid change in climate. The potential consequences of this global warming have still to be revealed and are difficult to anticipate.