72 resultados para Community Ecology


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effects of ocean acidification on the composition of the active bacterial and archaeal community within Arctic surface sediment was analysed in detail using 16S rRNA 454 pyrosequencing. Intact sediment cores were collected and exposed to one of five different pCO(2) concentrations [380 (present day), 540, 750, 1120 and 3000 atm] and RNA extracted after a period of 14 days exposure. Measurements of diversity and multivariate similarity indicated very little difference between pCO(2) treatments. Only when the highest and lowest pCO(2) treatments were compared were significant differences evident, namely increases in the abundance of operational taxonomic units most closely related to the Halobacteria and differences to the presence/absence structure of the Planctomycetes. The relative abundance of members of the classes Planctomycetacia and Nitrospira increased with increasing pCO(2) concentration, indicating that these groups may be able to take advantage of changing pH or pCO(2) conditions. The modest response of the active microbial communities associated with these sediments may be due to the low and fluctuating pore-water pH already experienced by sediment microbes, a result of the pH buffering capacity of marine sediments, or due to currently unknown factors. Further research is required to fully understand the impact of elevated CO2 on sediment physicochemical parameters, biogeochemistry and microbial community dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper analyses long-term and seasonal changes in the North Sea plankton community during the period 1970 to 2008. Based on Continuous Plankton Recorder (CPR) data covering 38 yr, major changes in both phytoplankton and zooplankton abundance and community structure were identified. Regime changes were detected around 1978, 1989 and 1998. The first 2 changes have been discussed in the literature and are defined as a cold episodic event (1978) and a regime shift towards a warm dynamic regime (1989). The effect of these 2 regime changes on plankton indicators was assessed and checked against previous studies. The 1998 change represents a shift in the abundance and seasonal patterns of dinoflagellates and the dominant zooplankton group, the neritic copepods. Furthermore, environmental factors such as air temperature, wind speed and the North Atlantic water inflow were identified as potential drivers of change in seasonal patterns, and the most-likely environmental causes for detected changes were assessed. We suggest that a change in the balance of dissolved nutrients driven by these environmental factors was the cause of the latest change in plankton community structure, which in turn could have affected the North Sea fish community.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the mechanisms that structure communities and influence biodiversity are fundamental goals of ecology. To test the hypothesis that the abundance and diversity of upper-trophic level predators (seabirds) is related to the underlying abundance and diversity of their prey (zooplankton) and ecosystem-wide energy availability (primary production), we initiated a monitoring program in 2002 that jointly and repeatedly surveys seabird and zooplankton populations across a 7,500 km British Columbia-Bering Sea-Japan transect. Seabird distributions were recorded by a single observer (MH) using a strip-width technique, mesozooplankton samples were collected with a Continuous Plankton Recorder, and primary production levels were derived using the appropriate satellite parameters and the Vertically Generalized Production Model (Behrenfeld and Falkowski 1997). Each trophic level showed clear spatio-temporal patterns over the course of the study. The strongest relationship between seabird abundance and diversity and the lower trophic levels was observed in March/April ('spring') and significant relationships were also found through June/July ('summer'). No discernable relationships were observed during the September/October ('fall') months. Overall, mesozooplankton abundance and biomass explained the dominant portion of seabird abundance and diversity indices (richness, Simpson's Index, and evenness), while primary production was only related to seabird richness. These findings underscore the notion that perturbations of ocean productivity and lower trophic level ecosystem constituents influenced by climate change, such as shifts in timing (phenology) and synchronicity (match-mismatch), could impart far-reaching consequences throughout the marine food web.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analyses of long-term time series of North Sea plankton and sea surface temperature (SST) data reveal that the annual planktonic larval abundance of three benthic phyla, Echinodermata, Arthropoda, and Mollusca, responds positively and immediately to SST. Long-term outcomes for the planktonic abundance of these three phyla are different, however. The planktonic larvae of echinoderms and decapod crustaceans have increased in abundance from 1958 to 2005, and especially since the mid-1980s, as North Sea SST has increased. In contrast, the abundance of bivalve mollusc larvae has declined, despite the positive year-to-year relationship between temperature and bivalve larval abundance continuing to hold. We argue that the changes in meroplankton abundance, coincident with increased phytoplankton and declining holoplankton, reflect the synchronous effect of rising SST and related changes in the pelagic community on the reproduction and recruitment of many benthic marine invertebrates. Under this scenario, the long-term decline in bivalve mollusc larvae will reflect increased predation on the settled larvae and adults by benthic decapods. These alterations in the zooplankton may therefore describe an ecosystem-wide restructuring of North Sea trophic interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The long-term effects of ocean warming on prokaryotic communities are unknown because of lack of historical data. We overcame this gap by applying a retrospective molecular analysis to the bacterial community on formalin-fixed samples from the historical Continuous Plankton Recorder archive, which is one of the longest and most geographically extensive collections of marine biological samples in the world. We showed that during the last half century, ubiquitous marine bacteria of the Vibrio genus, including Vibrio cholerae, increased in dominance within the plankton-associated bacterial community of the North Sea, where an unprecedented increase in bathing infections related to these bacteria was recently reported. Among environmental variables, increased sea surface temperature explained 45% of the variance in Vibrio data, supporting the view that ocean warming is favouring the spread of vibrios and may be the cause of the globally increasing trend in their associated diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean acidification influences sediment/water nitrogen fluxes, possibly by impacting on the microbial process of ammonia oxidation. To investigate this further, undisturbed sediment cores collected from Ny Alesund harbour (Svalbard) were incubated with seawater adjusted to CO2 concentrations of 380, 540, 760, 1,120 and 3,000 μatm. DNA and RNA were extracted from the sediment surface after 14 days' exposure and the abundance of bacterial and archaeal ammonia oxidising (amoA) genes and transcripts quantified using quantitative polymerase chain reaction. While there was no change to the abundance of bacterial amoA genes, an increase to 760 μatm pCO2 reduced the abundance of bacterial amoA transcripts by 65 %, and this was accompanied by a shift in the composition of the active community. In contrast, archaeal amoA gene and transcript abundance both doubled at 3,000 μatm, with an increase in species richness also apparent. This suggests that ammonia oxidising bacteria and archaea in marine sediments have different pH optima, and the impact of elevated CO2 on N cycling may be dependent on the relative abundances of these two major microbial groups. Further evidence of a shift in the balance of key N cycling groups was also evident: the abundance of nirS-type denitrifier transcripts decreased alongside bacterial amoA transcripts, indicating that NO3 − produced by bacterial nitrification fuelled denitrification. An increase in the abundance of Planctomycete-specific 16S rRNA, the vastmajority of which grouped with known anammox bacteria, was also apparent at 3,000 μatm pCO2. This could indicate a possible shift from coupled nitrification–denitrification to anammox activity at elevated CO2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eutrophication, coupled with loss of herbivory due to habitat degradation and overharvesting, has increased the frequency and severity of macroalgal blooms worldwide. Macroalgal blooms interfere with human activities in coastal areas, and sometimes necessitate costly algal removal programs. They also have many detrimental effects on marine and estuarine ecosystems, including induction of hypoxia, release of toxic hydrogen sulfide into the sediments and atmosphere, and the loss of ecologically and economically important species. However, macroalgal blooms can also increase habitat complexity, provide organisms with food and shelter, and reduce other problems associated with eutrophication. These contrasting effects make their overall ecological impacts unclear. We conducted a systematic review and meta-analysis to estimate the overall effects of macroalgal blooms on several key measures of ecosystem structure and functioning in marine ecosystems. We also evaluated some of the ecological and methodological factors that might explain the highly variable effects observed in different studies. Averaged across all studies, macroalgal blooms had negative effects on the abundance and species richness of marine organisms, but blooms by different algal taxa had different consequences, ranging from strong negative to strong positive effects. Blooms' effects on species richness also depended on the habitat where they occurred, with the strongest negative effects seen in sandy or muddy subtidal habitats and in the rocky intertidal. Invertebrate communities also appeared to be particularly sensitive to blooms, suffering reductions in their abundance, species richness, and diversity. The total net primary productivity, gross primary productivity, and respiration of benthic ecosystems were higher during macroalgal blooms, but blooms had negative effects on the productivity and respiration of other organisms. These results suggest that, in addition to their direct social and economic costs, macroalgal blooms have ecological effects that may alter their capacity to deliver important ecosystem services.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mangroves along the Sudanese Red Sea coast are under constant anthropogenic pressure. To better understand the influence of mangrove clearance on the intertidal benthic community, we investigated the composition, biodiversity and standing stock of the macrofauna communities at high-, mid- and low-water levels in three contrasting habitats: a bare sand flat, a cleared mangrove and an intact mangrove. In addition, a community-wide metric approach based on taxon-specific carbon and nitrogen isotope values was used to compare the trophic structure between the three habitats. The habitats differed significantly in terms of macrofaunal standing stock, community composition and trophic structure. The high- and mid-water levels of the intact mangroves showed a distinct macrofaunal community characterized by elevated densities and biomass, largely governed by higher decapod and gastropod abundances. Diversity was similar for cleared and intact mangroves, but much lower for the bare sand flat. Community-wide metrics indicated highest trophic diversity and community niche breadth in the intact mangroves. Differences between the cleared and intact mangroves can be partly attributed to differences in sediment characteristics resulting from mangrove clearance. These results suggest a significant impact of mangrove clearance on the macrofaunal community and trophic structure. This study calls for further investigations and management actions to protect and restore these habitats, and ensure the survival of this ecologically valuable coastal ecosystem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To restore lateral connectivity in highly regulated river-floodplain systems, it has become necessary to implement localized, "managed" connection flows, made possible using floodplain irrigation infrastructure. These managed flows contrast with "natural", large-scale, overbank flood pulses. We compared the effects of a managed and a natural connection event on (i) the composition of the large-bodied fish community and (ii) the structure of an endangered catfish population of a large floodplain lake. The change in community composition following the managed connection was not greater than that exhibited between seasons or years during disconnection. By contrast, the change in fish community structure following the natural connection was much larger than that attributed to background, within-and between-year variability during disconnection. Catfish population structure only changed significantly following the natural flood. While the natural flood increased various population rates of native fishes, it also increased those of non-native carp, a pest species. To have a positive influence on native biodiversity, environmental flows may need to be delivered to floodplains in a way that simulates the properties of natural flood pulses. A challenge, however, will be managing river-floodplain connectivity to benefit native more than non-native species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anthropogenic climate change is exerting pressures on coastal ecosystems through increases in temperature, precipitation and ocean acidification. Phytoplankton community structure and photo-physiology are therefore adapting to these conditions. Changes in phytoplankton biomass and photosynthesis in relation to temperature and nutrient concentrations were assessed using a 14 year dataset from a coastal station in the Western English Channel (WEC). Dinoflagellate and coccolithophorid biomass exhibited a positive correlation with temperature, reaching the highest biomass at between 15 and 17°C. Diatoms showed a negative correlation with temperature, with highest biomass at 10°C. Chlorophyll a (chl a) normalised light-saturated photosynthetic rates (PBm) exhibited a hyperbolic response to increasing temperature, with an initial linear increase from 8 to 11°C, and reaching a plateau from 12°C. There was however no significant positive correlation between nutrients and phytoplankton biomass or PBm, which reflects the lag time between nutrient input and phytoplankton growth at this coastal site. The major phytoplankton groups that occurred at this site occupied distinct thermal niches, which in turn modified PBm. Increasing temperature, and higher water column stratification, was major factors in the initiation of dinoflagellates blooms at this site. Dinoflagellates blooms during summer also co-varied with silicate concentration, and acted as a tracer of dissolved inorganic nitrogen and phosphate from river run-off, which were subsequently reduced during these blooms. The data implies that increasing temperature and high river runoff during summer, will promote dinoflaglellates blooms in the WEC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the near future, the marine environment is likely to be subjected to simultaneous increases in temperature and decreased pH. The potential effects of these changes on intertidal, meiofaunal assemblages were investigated using a mesocosm experiment. Artificial Substrate Units containing meiofauna from the extreme low intertidal zone were exposed for 60 days to eight experimental treatments (four replicates for each treatment) comprising four pH levels: 8.0 (ambient control), 7.7 & 7.3 (predicted changes associated with ocean acidification), and 6.7 (CO2 point-source leakage from geological storage), crossed with two temperatures: 12 °C (ambient control) and 16 °C (predicted). Community structure, measured using major meiofauna taxa was significantly affected by pH and temperature. Copepods and copepodites showed the greatest decline in abundance in response to low pH and elevated temperature. Nematodes increased in abundance in response to low pH and temperature rise, possibly caused by decreased predation and competition for food owing to the declining macrofauna density. Nematode species composition changed significantly between the different treatments, and was affected by both seawater acidification and warming. Estimated nematode species diversity, species evenness, and the maturity index, were substantially lower at 16 °C, whereas trophic diversity was slightly higher at 16 °C except at pH 6.7. This study has demonstrated that the combination of elevated levels of CO2 and ocean warming may have substantial effects on structural and functional characteristics of meiofaunal and nematode communities, and that single stressor experiments are unlikely to encompass the complexity of abiotic and biotic interactions. At the same time, ecological interactions may lead to complex community responses to pH and temperature changes in the interstitial environment

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is ongoing debate as to whether the oligotrophic ocean is predominantly net autotrophic and acts as a CO2 sink, or net heterotrophic and therefore acts as a CO2 source to the atmosphere. This quantification is challenging, both spatially and temporally, due to the sparseness of measurements. There has been a concerted effort to derive accurate estimates of phytoplankton photosynthesis and primary production from satellite data to fill these gaps; however there have been few satellite estimates of net community production (NCP). In this paper, we compare a number of empirical approaches to estimate NCP from satellite data with in vitro measurements of changes in dissolved O2 concentration at 295 stations in the N and S Atlantic Ocean (including the Antarctic), Greenland and Mediterranean Seas. Algorithms based on power laws between NCP and particulate organic carbon production (POC) derived from 14C uptake tend to overestimate NCP at negative values and underestimate at positive values. An algorithm that includes sea surface temperature (SST) in the power function of NCP and 14C POC has the lowest bias and root-mean square error compared with in vitro measured NCP and is the most accurate algorithm for the Atlantic Ocean. Nearly a 13 year time series of NCP was generated using this algorithm with SeaWiFS data to assess changes over time in different regions and in relation to climate variability. The North Atlantic subtropical and tropical Gyres (NATL) were predominantly net autotrophic from 1998 to 2010 except for boreal autumn/winter, suggesting that the northern hemisphere has remained a net sink for CO2 during this period. The South Atlantic subtropical Gyre (SATL) fluctuated from being net autotrophic in austral spring-summer, to net heterotrophic in austral autumn–winter. Recent decadal trends suggest that the SATL is becoming more of a CO2 source. Over the Atlantic basin, the percentage of satellite pixels with negative NCP was 27%, with the largest contributions from the NATL and SATL during boreal and austral autumn–winter, respectively. Variations in NCP in the northern and southern hemispheres were correlated with climate indices. Negative correlations between NCP and the multivariate ENSO index (MEI) occurred in the SATL, which explained up to 60% of the variability in NCP. Similarly there was a negative correlation between NCP and the North Atlantic Oscillation (NAO) in the Southern Sub-Tropical Convergence Zone (SSTC),which explained 90% of the variability. There were also positive correlations with NAO in the Canary Current Coastal Upwelling (CNRY) and Western Tropical Atlantic (WTRA)which explained 80% and 60% of the variability in each province, respectively. MEI and NAO seem to play a role in modifying phases of net autotrophy and heterotrophy in the Atlantic Ocean.