146 resultados para Coastal and marine ecosystems
Resumo:
Regime shift and principal component analysis of a spatially disaggregated database capturing time-series of climatic, nutrient and plankton variables in the North Sea revealed considerable covariance between groups of ecosystem indicators. Plankton and climate time-series span the period 1958–2003, those of nutrients start in 1980. In both regions, the period from 1989 to 2001 identified in principal component 1 had warmer surface waters, higher Atlantic inflow and stronger winds, than the periods before or after. However, it was preceded by a regime shift in both open (PC2) and coastal (PC3) waters during 1977 towards more hours of sunlight and higher water temperature, which lasted until 1997. The relative influence of nutrient availability and climatic forcing differed between open and coastal North Sea regions. Inter-annual variability in phytoplankton dynamics of the open North Sea was primarily regulated by climatic forcing, specifically by sea surface temperature, Atlantic inflow and co-varying wind stress and NAO. Coastal phytoplankton variability, however, was regulated by insolation and sea surface temperature, as well as Si availability, but not by N or P. Regime shifts in principal components of hydrographic and climatic variables (explaining 55 and 61% of the variance in coastal and open water variables) were detected using Rodionov's sequential t-test. These shifts in hydroclimatic variables which occurred around 1977, 1989, 1997 and 2001, were synchronized in open and coastal waters, and were tracked by open water chlorophyll and copepods, but not by coastal plankton. North–central–south or open-coastal spatial breakdowns of the North Sea explained similar amounts of variability in most ecosystem indicators with the exception of diatom abundance and chlorophyll concentration, which were clearly better explained using the open-coastal configuration.
Resumo:
Microplastic litter is a pervasive pollutant present in aquatic systems across the globe. A range of marine organisms have the capacity to ingest microplastics, resulting in adverse health effects. Developing methods to accurately quantify microplastics in productive marine waters, and those internalized by marine organisms, is of growing importance. Here we investigate the efficacy of using acid, alkaline and enzymatic digestion techniques in mineralizing biological material from marine surface trawls to reveal any microplastics present. Our optimized enzymatic protocol can digest >97% (by weight) of the material present in plankton-rich seawater samples without destroying any microplastic debris present. In applying the method to replicate marine samples from the western English Channel, we identified 0.27 microplastics m−3. The protocol was further used to extract microplastics ingested by marine zooplankton under laboratory conditions. Our findings illustrate that enzymatic digestion can aid the detection of microplastic debris within seawater samples and marine biota.
Resumo:
Satellite altimetry has revolutionized our understanding of ocean dynamics thanks to frequent sampling and global coverage. Nevertheless, coastal data have been flagged as unreliable due to land and calm water interference in the altimeter and radiometer footprint and uncertainty in the modelling of high-frequency tidal and atmospheric forcing. Our study addresses the first issue, i.e. altimeter footprint contamination, via retracking, presenting ALES, the Adaptive Leading Edge Subwaveform retracker. ALES is potentially applicable to all the pulse-limited altimetry missions and its aim is to retrack both open ocean and coastal data with the same accuracy using just one algorithm. ALES selects part of each returned echo and models it with a classic ”open ocean” Brown functional form, by means of least square estimation whose convergence is found through the Nelder-Mead nonlinear optimization technique. By avoiding echoes from bright targets along the trailing edge, it is capable of retrieving more coastal waveforms than the standard processing. By adapting the width of the estimation window according to the significant wave height, it aims at maintaining the accuracy of the standard processing in both the open ocean and the coastal strip. This innovative retracker is validated against tide gauges in the Adriatic Sea and in the Greater Agulhas System for three different missions: Envisat, Jason-1 and Jason-2. Considerations of noise and biases provide a further verification of the strategy. The results show that ALES is able to provide more reliable 20-Hz data for all three missions in areas where even 1-Hz averages are flagged as unreliable in standard products. Application of the ALES retracker led to roughly a half of the analysed tracks showing a marked improvement in correlation with the tide gauge records, with the rms difference being reduced by a factor of 1.5 for Jason-1 and Jason-2 and over 4 for Envisat in the Adriatic Sea (at the closest point to the tide gauge).
Resumo:
The phenomenon of endocrine disruption is currently a source of growing concern. Feminisation of male fish in UK rivers has been shown to occur extensively and has been linked with exposure to endocrine-disrupting compounds present in the environment. Much less is known of the extent and scale of endocrine disruption in estuarine and marine ecosystems, particularly in invertebrates. We present evidence that intersex, in the form of ovotestis, is occurring in the common estuarine bivalve Scrobicularia plana, which is considered to be inherently gonochoristic. We report varying degrees in the severity of ovotestis in male S. plana, and have adopted and developed a grading method to assess the extent of this intersex condition. These findings indicate that S. plana offers potential for widespread screening and investigation of endocrine disruption, helping to focus remediatory strategy.
Resumo:
1.Commercial fishing is an important socio-economic activity in coastal regions of the UK and Ireland. Ocean–atmospheric changes caused by greenhouse gas emissions are likely to affect future fish and shellfish production, and lead to increasing challenges in ensuring long-term sustainable fisheries management. 2.The paper reviews existing knowledge and understanding of the exposure of marine ecosystems to ocean-atmospheric changes, the consequences of these changes for marine fisheries in the UK and Ireland, and the adaptability of the UK and Irish fisheries sector. 3.Ocean warming is resulting in shifts in the distribution of exploited species and is affecting the productivity of fish stocks and underlying marine ecosystems. In addition, some studies suggest that ocean acidification may have large potential impacts on fisheries resources, in particular shell-forming invertebrates. 4.These changes may lead to loss of productivity, but also the opening of new fishing opportunities, depending on the interactions between climate impacts, fishing grounds and fleet types. They will also affect fishing regulations, the price of fish products and operating costs, which in turn will affect the economic performance of the UK and Irish fleets. 5.Key knowledge gaps exist in our understanding of the implications of climate and ocean chemistry changes for marine fisheries in the UK and Ireland, particularly on the social and economic responses of the fishing sectors to climate change. However, these gaps should not delay climate change mitigation and adaptation policy actions, particularly those measures that clearly have other ‘co-benefits’.
Resumo:
United Kingdom (UK) and European Union policy is rapidly developing to meet international targets for the sustainable use and protection of the marine environment. To inform this process, research needs to keep pace with these changes and research questions must be focused on providing robust scientific evidence. Thirty four priority research questions within six broad themes were identified by delegates who attended the 1st marine and coastal policy Forum, hosted by the Centre for Marine and Coastal Policy Research at Plymouth University in June 2011. The priority questions formed through this research are timely and reflect the pace and change of marine policy in the UK in response to international, European and national policy drivers. Within the data theme, the majority of questions seek to find improved procedures to manage and use data effectively. Questions related to governance focus on how existing policies should be implemented. The marine conservation questions focus entirely upon implementation and monitoring of existing policy. Questions related to ecosystem services focus on research to support the conceptual links between ecosystem services, ecosystem function, and marine management. Questions relating to marine citizenship are fundamental questions about the nature of societal engagement with the sea. Finally, the marine planning questions focus upon understanding the general approaches to be taken to marine planning rather than its detailed implementation. The questions that have emerged from this process vary in scale, approach and focus. They identify the interdisciplinary science that is currently needed to enable the UK to work towards delivering its European and international commitments to achieve the sustainable use and protection of the marine environment
Resumo:
There is an increasing demand for environmental assessments of the marine environment to include ecosystem function. However, existing schemes are predominantly based on taxonomic (i.e. structural) measures of biodiversity. Biodiversity and Ecosystem Function (BEF) relationships are suggested to provide a mechanism for converting taxonomic information into surrogates of ecosystem function. This review assesses the evidence for marine BEF relationships and their potential to be used in practical monitoring applications (i.e. operationalized). Five key requirements were identified for the practical application of BEF relationships: (1) a complete understanding of strength, direction and prevalence of marine BEF relationships, (2) an understanding of which biological components are influential within specific BEF relationships, (3) the biodiversity of the selected biological components can be measured easily, (4) the ecological mechanisms that are the most important for generating marine BEF relationships, i.e. identity effects or complementarity, are known and (5) the proportion of the overall functional variance is explained by biodiversity, and hence BEF relationships, has been established. Numerous positive and some negative BEF relationships were found within the literature, although many reproduced poorly the natural species richness, trophic structures or multiple functions of real ecosystems (requirement 1). Null relationships were also reported. The consistency of the positive and negative relationships was often low that compromised the ability to generalize BEF relationships and confident application of BEF within marine monitoring. Equally, some biological components and functions have received little or no investigation. Expert judgement was used to attribute biological components using spatial extent, presence and functional rate criteria (requirement 2). This approach highlighted the main biological components contributing the most to specific ecosystem functions, and that many of the particularly influential components were found to have received the least amount of research attention. The need for biodiversity to be measureable (requirement 3) is possible for most biological components although difficult within the functionally important microbes. Identity effects underpinned most marine BEF relationships (requirement 4). As such, processes that translated structural biodiversity measures into functional diversity were found to generate better BEF relationships. The analysis of the contribution made by biodiversity, over abiotic influences, to the total expression of a particular ecosystem function was rarely measured or considered (requirement 5). Hence it is not possible to determine the overall importance of BEF relationships within the total ecosystem functioning observed. In the few studies where abiotic factors had been considered, it was clear that these modified BEF relationships and have their own direct influence on functional rate. Based on the five requirements, the information required for immediate ‘operationalization’ of BEF relationships within marine functional monitoring is lacking. However, the concept of BEF inclusion within practical monitoring applications, supported by ecological modelling, shows promise for providing surrogate indicators of functioning.