61 resultados para Brazilian Coast
Variation of phytoplankton assemblages along the Mozambique coast as revealed by HPLC and microscopy
Resumo:
This study is an integrated overview of pigment and microscopic analysis of phytoplankton communities throughout the Mozambican coast. Collected samples revealed notable patterns of phytoplankton occurrence and distribution, with community structure changing between regions and sample depth. Pigment data showed Delagoa Bight, Sofala Bank and Angoche as the most productive regions throughout the sampled area. In general, micro-sized phytoplankton, particularly diatoms, were important contributors to biomass both at surface and sub-surface maximum (SSM) samples, although were almost absent in the northern stations. In contrast, nano- and pico-sized phytoplankton revealed opposing patterns. Picophytoplankton were most abundant at surface, as opposed to nanophytoplankton, which were more abundant at the SSM. Microphytoplankton were associated with cooler southern water masses, while picophytoplankton were related to warmer northern water masses. Nanophytoplankton were found to increase their contribution to biomass with increasing SSM. Microscopy information on the genera and species level revealed the diatoms Chaetoceros spp., Proboscia alata, Pseudo-nitzschia spp., Cylindrotheca closterium and Hemiaulus haukii as the most abundant taxa of the micro-sized phytoplankton. Discosphaera tubifera and Emiliania huxleyi were the most abundant coccolithophores, nano-sized phytoplankton.
Resumo:
Mangroves along the Sudanese Red Sea coast are under constant anthropogenic pressure. To better understand the influence of mangrove clearance on the intertidal benthic community, we investigated the composition, biodiversity and standing stock of the macrofauna communities at high-, mid- and low-water levels in three contrasting habitats: a bare sand flat, a cleared mangrove and an intact mangrove. In addition, a community-wide metric approach based on taxon-specific carbon and nitrogen isotope values was used to compare the trophic structure between the three habitats. The habitats differed significantly in terms of macrofaunal standing stock, community composition and trophic structure. The high- and mid-water levels of the intact mangroves showed a distinct macrofaunal community characterized by elevated densities and biomass, largely governed by higher decapod and gastropod abundances. Diversity was similar for cleared and intact mangroves, but much lower for the bare sand flat. Community-wide metrics indicated highest trophic diversity and community niche breadth in the intact mangroves. Differences between the cleared and intact mangroves can be partly attributed to differences in sediment characteristics resulting from mangrove clearance. These results suggest a significant impact of mangrove clearance on the macrofaunal community and trophic structure. This study calls for further investigations and management actions to protect and restore these habitats, and ensure the survival of this ecologically valuable coastal ecosystem.
Resumo:
I. 430 plankton samples, which were taken by several herring drifters using the Continuous Plankton Recorder in the Shields fishing area during the summer seasons of 1931 to 1933, are analysed to show the main changes in the plankton during those seasons. 2. A comparison is made between the proportions of the different zooplankton organisms found in the plankton and the proportions of these recorded by Savage (1937) in the stomachs of herring obtained from drifters working in the same area and during the same time. The comparisons are made for 29 ten-day periods in the seasons 1931 to 1933, and in addition, for 6 ten-day periods relating to a single drifter which obtained both plankton and stomach samples at the same time in 1932. 3. The comparisons in 2 provide evidence that the herring feeds by selecting certain organisms by individual acts of capture and not by swimming open-mouthed to strain out the plankton indiscriminately: (a) Calanus and Temora in the stomachs either correspond fairly closely to the proportions in the plankton or they may be in very much higher proportions. The latter is always true regarding Anomalocera. (b) Acartia, Oithona, Cladocera and Lamellibranch larvae are always in larger proportions in the plankton than in the stomachs; this applies also to Centropages with two insignificant exceptions. (c) There is a close correspondence between the numbers of Limacina and Sagitta in the plankton and stomachs in the latter half of the 1931 season, but not during 1932 and 1933, when the numbers in the stomachs were insignificant ; during the former period there was a great scarcity of Calanus in the plankton.
Resumo:
Chlorophyll-a satellite products are routinely used in oceanography, providing a synoptic and global view of phytoplankton abundance. However, these products lack information on the community structure of the phytoplankton, which is crucial for ecological modelling and ecosystem studies. To assess the usefulness of existing methods to differentiate phytoplankton functional types (PFT) or phytoplankton size classes from satellite data, in-situ phytoplankton samples collected in the Western Iberian coast, on the North-East Atlantic, were analysed for pigments and absorption spectra. Water samples were collected in five different locations, four of which were located near the shore and another in an open-ocean, seamount region. Three different modelling approaches for deriving phytoplankton size classes were applied to the in situ data. Approaches tested provide phytoplankton size class information based on the input of pigments data (Brewin et al., 2010), absorption spectra data (Ciotti et al., 2002) or both (Uitz et al., 2008). Following Uitz et al. (2008), results revealed high variability in microphytoplankton chlorophyll-specific absorption coefficients, ranging from 0.01 to 0.09 m2 (mg chl)− 1 between 400 and 500 nm. This spectral analysis suggested, in one of the regions, the existence of small cells (< 20 μm) in the fraction of phytoplankton presumed to be microphytoplankton (based on diagnostic pigments). Ciotti et al. (2002) approach yielded the highest differences between modelled and measured absorption spectra for the locations where samples had high variability in community structure and cell size. The Brewin et al. (2010) pigment-based model was adjusted and a set of model coefficients are presented and recommended for future studies in offshore water of the Western Iberian coast.
Resumo:
The distribution of cirripede cyprids in relation to associated oceanographic conditions was obtained from a grid survey and intensive vertical sampling at a fixed station located 21 km off the northwest Portuguese coast in May 2002. Analysis of cyprid length composition allowed separation of 3 species groups. Chthamalus montagui, Pollicipes pollicipes and Balanus perforatus were largely restricted to the neuston layer and showed only low-amplitude vertical migration. Most C. stellatus cyprids only appeared in the upper 20 m at night, a migration which did not appear to be affected by physical conditions in the water column, but some differences in the vertical migration pattern between days were probably related to varying light penetration. C. montagui is the most abundant adult species found along the Portuguese coast, but C. stellatus cyprids, at densities of up to 8.7 ind. m–3, were the most common sampled in all depth strata at the fixed station. Cyprid horizontal distribution was mainly restricted to an offshore band along the inner shelf, where highest densities were 11 to 15 ind. m–3. This distribution pattern was considered to result from upwelling-favourable wind conditions, creating fronts along the shelf in which the cyprids become concentrated. Cyprid vertical migration, in association with current vertical shear and onshore movement of fronts during upwelling-relaxation periods, may be the mechanisms returning cyprids to the coast to settle. The regularity of these events in the region falls within the period of cyprid viability.