42 resultados para diurnal cycle
Resumo:
Regular plankton sampling off Plymouth by the Marine Biological Association (MBA) has been carried out from the early 1900s. Much of the sample analysis and description of the results was carried out by Sir Frederick Russell and Professor Alan Southward (AJS), the latter having completed the organisation and transfer of the paper records to digital files. The current authors have transferred the main data files of AJS on zooplankton and fish larvae to the MBA long-term database (including various editing and checking against original analysis records and published data) together with adding the data for 2002-2009. In this report the updated time-series are reviewed in the context of earlier work, particularly with respect to the Russell Cycle. It is not intended as an exhaustive analysis. Brief details of the sampling and comments on data processing are given in an appendix.
Resumo:
In a rapidly changing world it is essential that we should understand the factors controlling the sustainability of ecosystems. In aquatic ecosystems, both sensitivity and recoverability are influenced strongly by the life cycles of the organisms concerned. The response of individual species to change and their chances of survival in a variable environment can be affected dramatically by the timing and location of disturbances relative to their natural rhythms of fertilisation, dispersal and development. This book illustrates the wide range of issues that must be addressed to understand such relationships. Its purpose is to consider those aspects of life history that make aquatic organisms especially susceptible to (or adaptable to) changing environments -and hence to discuss links between impacts on individuals and the consequent effects on populations and communities.
Resumo:
The marine cyanobacterium Prochlorococcus, the most abundant phototrophic organism on Earth, numerically dominates the phytoplankton in nitrogen (N)-depleted oceanic gyres. Alongside inorganic N sources such as nitrite and ammonium, natural populations of this genus also acquire organic N, specifically amino acids. Here, we investigated using isotopic tracer and flow cytometric cell sorting techniques whether amino acid uptake by Prochlorococcus is subject to a diel rhythmicity, and if so, whether this was linked to a specific cell cycle stage. We observed, in contrast to diurnally similar methionine uptake rates by Synechococcus cells, obvious diurnal rhythms in methionine uptake by Prochlorococcus cells in the tropical Atlantic. These rhythms were confirmed using reproducible cyclostat experiments with a light-synchronized axenic Prochlorococcus (PCC9511 strain) culture and S-35-methionine and H-3-leucine tracers. Cells acquired the tracers at lower rates around dawn and higher rates around dusk despite > 10(4) times higher concentration of ammonium in the medium, presumably because amino acids can be directly incorporated into protein. Leucine uptake rates by cells in the S+G(2) cell cycle stage were consistently 2.2 times higher than those of cells at the G(1) stage. Furthermore, S+G(2) cells upregulated amino acid uptake 3.5 times from dawn to dusk to boost protein synthesis prior to cell division. Because Prochlorococcus populations can account from 13% at midday to 42% at dusk of total microbial uptake of methionine and probably of other amino acids in N-depleted oceanic waters, this genus exerts diurnally variable, strong competitive pressure on other bacterioplankton populations.
Resumo:
The Arctic Ocean is one of the fastest changing oceans, plays an important role in global carbon cycling and yet is a particularly challenging ocean to study. Hence, observations tend to be relatively sparse in both space and time. How the Arctic functions, geophysically, but also ecologically, can have significant consequences for the internal cycling of carbon, and subsequently influence carbon export, atmospheric CO2 uptake and food chain productivity. Here we assess the major carbon pools and associated processes, specifically summarizing the current knowledge of each of these processes in terms of data availability and ranges of rates and values for four geophysical Arctic Ocean domains originally described by Carmack & Wassmann (2006): inflow shelves, which are Pacific-influenced and Atlantic-influenced; interior, river-influenced shelves; and central basins. We attempt to bring together knowledge of the carbon cycle with the ecosystem within each of these different geophysical settings, in order to provide specialist information in a holistic context. We assess the current state of models and how they can be improved and/or used to provide assessments of the current and future functioning when observational data are limited or sparse. In doing so, we highlight potential links in the physical oceanographic regime, primary production and the flow of carbon within the ecosystem that will change in the future. Finally, we are able to highlight priority areas for research, taking a holistic pan-Arctic approach.