45 resultados para Stocks.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Continuous Plankton Recorder data suggest that the Irminger Sea supports a major proportion of the surface-living population of the copepod Calanus finmarchicus in the northern North Atlantic, but there have been few studies of its population dynamics in the region. In this paper, we document the seasonal changes in the demographic structure of C finmarchicus in the Irminger Sea from a field programme during 2001/2002, and the associations between its developmental stages and various apparent bio-physical zones. Overwintering stages were found widely at depth (>500 m) across the Irminger Sea, and surviving females were widely distributed in the surface waters the following spring. However, recruitment of the subsequent generation was concentrated around the fringes of the Irminger Sea basin, along the edges of the Irminger and East Greenland Currents, and not in the central basin. In late summer animals were found descending back to overwintering depths in the Central Irminger Sea. The key factors dictating this pattern of recruitment appear to be (a) the general circulation regime, (b) predation on eggs in the spring, possibly by the surviving GO stock, and (c) mortality of first feeding naupliar stages in the central basin where food concentrations appear to be low throughout the year. We compared the demographic patterns in 2001/2002 with observations from the only previous major survey in 1963 and with data from the Continuous Plankton Recorder (CPR) surveys. In both previous data sets, the basic structure of GO ascent from the central basin and G1 recruitment around the fringes was a robust feature, suggesting that it is a recurrent phenomenon. The Irminger Sea is a complex mixing zone between polar and Atlantic water masses, and it has also been identified as a site of sporadic deep convection. The physical oceanographic characteristics of the region are therefore potentially sensitive to climate fluctuations. Despite this, the abundance of C finmarchicus in the region, as measured by the CPR surveys, appears not to have responded to climate factors linked to the North Atlantic Oscillation Index, in contrast with the stocks in eastern Atlantic areas. We speculate that this may because biological factors (production and mortality), rather than transport processes are the key factors affecting the population dynamics in the Irminger Sea. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During recent decades anthropogenic activities have dramatically impacted the Black Sea ecosystem. High levels of riverine nutrient input during the 1970s and 1980s caused eutrophic conditions including intense algal blooms resulting in hypoxia and the subsequent collapse of benthic habitats on the northwestern shelf. Intense fishing pressure also depleted stocks of many apex predators, contributing to an increase in planktivorous fish that are now the focus of fishing efforts. Additionally, the Black Sea's ecosystem changed even further with the introduction of exotic species. Economic collapse of the surrounding socialist republics in the early 1990s resulted in decreased nutrient loading which has allowed the Black Sea ecosystem to start to recover, but under rapidly changing economic and political conditions, future recovery is uncertain. In this study we use a multidisciplinary approach to integrate information from socio-economic and ecological systems to model the effects of future development scenarios on the marine environment of the northwestern Black Sea shelf. The Driver–Pressure–State-Impact-Response framework was used to construct conceptual models, explicitly mapping impacts of socio-economic Drivers on the marine ecosystem. Bayesian belief networks (BBNs), a stochastic modelling technique, were used to quantify these causal relationships, operationalise models and assess the effects of alternative development paths on the Black Sea ecosystem. BBNs use probabilistic dependencies as a common metric, allowing the integration of quantitative and qualitative information. Under the Baseline Scenario, recovery of the Black Sea appears tenuous as the exploitation of environmental resources (agriculture, fishing and shipping) increases with continued economic development of post-Soviet countries. This results in the loss of wetlands through drainage and reclamation. Water transparency decreases as phytoplankton bloom and this deterioration in water quality leads to the degradation of coastal plant communities (Cystoseira, seagrass) and also Phyllophora habitat on the shelf. Decomposition of benthic plants results in hypoxia killing flora and fauna associated with these habitats. Ecological pressure from these factors along with constant levels of fishing activity results in target stocks remaining depleted. Of the four Alternative Scenarios, two show improvements on the Baseline ecosystem condition, with improved waste water treatment and reduced fishing pressure, while the other two show a worsening, due to increased natural resource exploitation leading to rapid reversal of any recent ecosystem recovery. From this we conclude that variations in economic policy have significant consequences for the health of the Black Sea, and ecosystem recovery is directly linked to social–economic choices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Continuous Plankton Recorder (CPR) survey has been sampling plankton in the North Sea since 1931. However the identification of the larval and juvenile fish taken in the survey has not been a part of the routine analysis of the samples. Specialist analysis of the fish was carried out between 1948 and the early 1980s but the data were available as hard copy only. As part of MarBEF, data on >60 taxa from 1948 to 1972 have been entered on a database which is now linked to EUROBIS to show the biogeographical information and the data are available for general research. Examples of the data are shown. These data provide a background on the variability of fish stocks before the recent period of rapid warming and in some cases before significant fisheries developed. Data for subsequent years will be made available as possible and work is now underway to bring the analysis up to date. This will provide time series over six decades.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been hypothesized that changes in zooplankton community structure over the past four decades led to reduced growth and survival of prerecruit Atlantic cod (Gadus morhua) and that this was a key factor underlying poor year classes, contributing to stock collapse, and inhibiting the recovery of stocks around the UK. To evaluate whether observed changes in plankton abundance, species composition and temperature could have led to periods of poorer growth of cod larvae, we explored the effect of prey availability and temperature on early larval growth using an empirical trophodynamic model. Prey availability was parameterized using species abundance data from the Continuous Plankton Recorder. Our model suggests that the observed changes in plankton community structure in the North Sea may have had less impact on cod larval growth, at least for the first 40 days following hatching, than previously suggested. At least in the short term, environmental and prey conditions should be able to sustain growth of cod larvae and environmental changes acting on this early life stage should not limit stock recovery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Nazaré Canyon on the Portuguese Margin (NE Atlantic) was sampled during spring-summer for three consecutive years (2005–2007), permitting the first inter-annual study of the meiofaunal communities at the Iberian Margin at two abyssal depths (~3500 m and ~4400 m). Using new and already published data, the meiofauna standing stocks (abundance and biomass) and nematode structural and functional diversity were investigated in relation to the sediment biogeochemistry (e.g. organic carbon, nitrogen, chlorophyll a, phaeopigments) and grain size. A conspicuous increase in sand content from 2005 to 2006 and decrease of phytodetritus at both sites, suggested the occurrence of one or more physical disturbance events. Nematode standing stocks and trophic diversity decreased after these events, seemingly followed by a recovery/recolonisation period in 2007, which was strongly correlated with an increase in the quantity and bioavailability of phytodetrital organic matter supplied. Changes in meiofauna assemblages, however, also differed between stations, likely because of the contrasting hydrodynamic and food supply conditions. Higher meiofauna and nematode abundances, biomass and trophic complexity were found at the shallowest canyon station, where the quantity, quality and bioavailability of food material were higher than at the deeper site. The present results suggest that even though inter-annual variations in the sedimentary environment can regulate the meiofauna in the abyssal Nazaré Canyon, heterogeneity between sampling locations in the canyon were more pronounced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MURAWSKI AND COLLEAGUES STATE THAT OUR assessment of the impacts of global marine biodiversity loss is overly pessimistic. They imply that management interventions are likely to reverse current trends of overfishing, and that the U.S. National Marine Fisheries Service (NMFS) has already met that goal. They cite Georges Bank haddock as an example and contest that catch metrics (as used in our global analysis) are sufficient to track the status of this particular fish stock and possibly others. We agree that precise biomass data are preferable, but these are rarely available. Here, we illustrate that catches are a good proxy of the status of haddock, although there can be a short delay in detecting recovery under intense management. While NMFS’s own data show that full recovery is still uncommon (<5% of overfished stocks) (1), we strongly agree that destructive trends can be turned around and that rebuilding efforts need to be intensified to meet that goal. But we must not miss the forest for the trees: Continuing focus on single, well-assessed, economically viable species will leave most of the ocean’s declining biodiversity under the radar.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mediterranean demersal fisheries are highly multispecific and many of their target stocks are overexploited. In addition, rocketing fuel costs and low market prices of traditionally high-value species are challenging the viability of fisheries. Here, based on the numeric results of a simulation model, we conclude that this situation can be remedied by reducing both fishing mortality and fishing costs. According to our model results, fishing effort reductions of 48–71% would improve the health of fish stocks while increasing the economic profits of Mallorca islands bottom trawl fishery to as much as 1.9 M€ (146% higher than current profits). If all fish stocks were exploited at their MSY (or below) level, the reduction in fishing effort would have to be of 71% from current values. If equilibrium profits from the fishery were to be maximized (MEY), fishing effort would need to be reduced by 48%. These results must be taken with caution due the many sources of uncertainty of our analysis. The modeling tools used to estimate these values are conditional to the adequate treatment of two sources of uncertainty that are particularly problematic in Mediterranean fisheries: insufficiently known recruitment variability and lack of periodic evaluations of the state of many species. Our results show that fishing effort reductions would produce economic yield gains after a period of transition. Further studies on the benefits of changing the size-selection pattern of fisheries, on better estimation of stock–recruitment relationships and on better quantifications of the contribution of secondary species to these fisheries, are expected to improve the scientific recommendations for Mediterranean demersal fisheries toward sustainability principles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is accepted that world’s fisheries are not generally exploited at their biological or their economic optimum. Most fisheries assessments focus on the biological capacity of fish stocks to respond to harvesting and few have attempted to estimate the economic efficiency at which ecosystems are exploited. The latter is important as fisheries contribute considerably to the economic development of many coastal communities. Here we estimate the overall potential economic rent for the fishing industry in the North Atlantic to be B€ 12.85, compared to current estimated profits of B€ 0.63. The difference between the potential and the net profits obtained from North Atlantic fisheries is therefore B€ 12.22. In order to increase the profits of North Atlantic fisheries to a maximum, total fish biomass would have to be rebuilt to 108 Mt (2.4 times more than present) by reducing current total fishing effort by 53%. Stochastic simulations were undertaken to estimate the uncertainty associated with the aggregate bioeconomic model that we use and we estimate the economic loss NA fisheries in a range of 2.5 and 32 billion of euro. We provide economic justification for maintaining or restoring fish stocks to above their MSY biomass levels. Our conclusions are consistent with similar global scale studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The deep sea is often viewed as a vast, dark, remote, and inhospitable environment, yet the deep ocean and seafloor are crucial to our lives through the services that they provide. Our understanding of how the deep sea functions remains limited, but when treated synoptically, a diversity of supporting, provisioning, regulating and cultural services becomes apparent. The biological pump transports carbon from the atmosphere into deep-ocean water masses that are separated over prolonged periods, reducing the impact of anthropogenic carbon release. Microbial oxidation of methane keeps another potent greenhouse gas out of the atmosphere while trapping carbon in authigenic carbonates. Nutrient regeneration by all faunal size classes provides the elements necessary for fueling surface productivity and fisheries, and microbial processes detoxify a diversity of compounds. Each of these processes occur on a very small scale, yet considering the vast area over which they occur they become important for the global functioning of the ocean. The deep sea also provides a wealth of resources, including fish stocks, enormous bioprospecting potential, and elements and energy reserves that are currently being extracted and will be increasingly important in the near future. Society benefits from the intrigue and mystery, the strange life forms, and the great unknown that has acted as a muse for inspiration and imagination since near the beginning of civilization. While many functions occur on the scale of microns to meters and timescales up to years, the derived services that result are only useful after centuries of integrated activity. This vast dark habitat, which covers the majority of the globe, harbour processes that directly impact humans in a variety of ways; however, the same traits that differentiate it from terrestrial or shallow marine systems also result in a greater need for integrated spatial and temporal understanding as it experiences increased use by society. In this manuscript we aim to provide a foundation for informed conservation and management of the deep sea by summarizing the important role of the deep sea in society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using the Food and Agriculture Organization’s (FAO) Mediterranean capture fisheries production dataset in conjunction with global and Mediterranean sea surface temperatures, we investigated trends in fisheries landings and landings per unit of effort of commercially important marine organisms, in relation to temperature oscillations. In addition to the overall warming trend, a temperature shift was detected in the Mediterranean Sea in the late 1990s. Fisheries landings fluctuations were examined for the most abundant commercial species (59 species) and showed significant year-to-year correlations with temperature for nearly 60 % of the cases. From these, the majority (~70 %) were negatively related and showed a reduction of 44 % on average. Increasing trends were found, mainly in the landings of species with short life spans, which seem to have benefited from the increase in water temperature. Τhe effect of oceanic warming is apparent in most species or groups of species sharing ecological (e.g. small and medium pelagic, demersal fish) or taxonomic (e.g. cephalopods, crustaceans) traits. A landings-per-unit-of-effort (LPUE) proxy, using data from the seven Mediterranean European Union member states, also showed significant correlation with temperature fluctuations for six out of the eight species examined, indicating the persistence of temperature influence on landings when the fishing effect is accounted for. The speed of response of marine landings to the warming of the Mediterranean Sea possibly shows both the sensitivity and the vulnerable state of the fish stocks and indicates that climate should be examined together with fisheries as a factor shaping stock fluctuations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Marine ecosystems are complex networks of organisms interacting either directly or indirectly while under the influence of the physical and chemical properties of the medium they inhabit. The interplay between these biological agents and their abiotic environment results in complex non-linear responses to individual and multiple stressors, influenced by feedbacks between these organisms and their environment. These ecosystems provide key services that benefit humanity such as food provisioning via the transfer of energy to exploited fish populations or climate regulation via the sinking, subsequent mineralization and ultimately storage of carbon in the ocean interior. These key characteristics or emergent features of marine ecosystems are subject to rapid change (e.g. regime shifts; Alheit et al., 2005 and Scheffer et al., 2009), with outcomes that are largely unpredictable in a deterministic sense. The North Atlantic Ocean is host to a number of such systems which are collectively being influenced by the unique physical and chemical features of this ocean basin, such as the Atlantic Meridional Overturning Circulation (AMOC), the basin’s ventilation with the Arctic Ocean, the dynamics of heat transport via the Gulf Stream and the formation of deep water at high latitudes. These features drive the solubility and biological pumps and support the production and environments that results in large exploited fish stocks. Our knowledge of its functioning as a coupled system, and in particular how it will respond to change, is still limited despite the scientific effort exerted over more than 100 years. This is due in part to the difficulty of providing synoptic overviews of a vast area, and to the fact that most fieldwork provides only snapshots of the complex physical, chemical and biological processes and their interactions. These constraints have in the past limited the development of a mechanistic understanding of the basin as a whole, and thus of the services it provides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mediterranean demersal fisheries are highly multispecific and many of their target stocks are overexploited. In addition, rocketing fuel costs and low market prices of traditionally high-value species are challenging the viability of fisheries. Here, based on the numeric results of a simulation model, we conclude that this situation can be remedied by reducing both fishing mortality and fishing costs. According to our model results, fishing effort reductions of 48-71% would improve the health of fish stocks while increasing the economic profits of Mallorca islands bottom trawl fishery to as much as 1.9 M(sic) (146% higher than current profits). If all fish stocks were exploited at their MSY (or below) level, the reduction in fishing effort would have to be of 71% from current values. If equilibrium profits from the fishery were to be maximized (MEY), fishing effort would need to be reduced by 48%. These results must be taken with caution due the many sources of uncertainty of our analysis. The modeling tools used to estimate these values are conditional to the adequate treatment of two sources of uncertainty that are particularly problematic in Mediterranean fisheries: insufficiently known recruitment variability and lack of periodic evaluations of the state of many species. Our results show that fishing effort reductions would produce economic yield gains after a period of transition. Further studies on the benefits of changing the size-selection pattern of fisheries, on better estimation of stock recruitment relationships and on better quantifications of the contribution of secondary species to these fisheries, are expected to improve the scientific recommendations for Mediterranean demersal fisheries toward sustainability principles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High level environmental screening study for offshore wind farm developments – marine habitats and species This report provides an awareness of the environmental issues related to marine habitats and species for developers and regulators of offshore wind farms. The information is also relevant to other offshore renewable energy developments. The marine habitats and species considered are those associated with the seabed, seabirds, and sea mammals. The report concludes that the following key ecological issues should be considered in the environmental assessment of offshore wind farms developments: • likely changes in benthic communities within the affected area and resultant indirect impacts on fish, populations and their predators such as seabirds and sea mammals; • potential changes to the hydrography and wave climate over a wide area, and potential changes to coastal processes and the ecology of the region; • likely effects on spawning or nursery areas of commercially important fish and shellfish species; • likely effects on mating and social behaviour in sea mammals, including migration routes; • likely effects on feeding water birds, seal pupping sites and damage of sensitive or important intertidal sites where cables come onshore; • potential displacement of fish, seabird and sea mammals from preferred habitats; • potential effects on species and habitats of marine natural heritage importance; • potential cumulative effects on seabirds, due to displacement of flight paths, and any mortality from bird strike, especially in sensitive rare or scarce species; • possible effects of electromagnetic fields on feeding behaviour and migration, especially in sharks and rays, and • potential marine conservation and biodiversity benefits of offshore wind farm developments as artificial reefs and 'no-take' zones. The report provides an especially detailed assessment of likely sensitivity of seabed species and habitats in the proposed development areas. Although sensitive to some of the factors created by wind farm developments, they mainly have a high recovery potential. The way in which survey data can be linked to Marine Life Information Network (MarLIN) sensitivity assessments to produce maps of sensitivity to factors is demonstrated. Assessing change to marine habitats and species as a result of wind farm developments has to take account of the natural variability of marine habitats, which might be high especially in shallow sediment biotopes. There are several reasons for such changes but physical disturbance of habitats and short-term climatic variability are likely to be especially important. Wind farm structures themselves will attract marine species including those that are attached to the towers and scour protection, fish that associate with offshore structures, and sea birds (especially sea duck) that may find food and shelter there. Nature conservation designations especially relevant to areas where wind farm might be developed are described and the larger areas are mapped. There are few designated sites that extend offshore to where wind farms are likely to be developed. However, cable routes and landfalls may especially impinge on designated sites. The criteria that have been developed to assess the likely marine natural heritage importance of a location or of the habitats and species that occur there can be applied to survey information to assess whether or not there is anything of particular marine natural heritage importance in a development area. A decision tree is presented that can be used to apply ‘duty of care’ principles to any proposed development. The potential ‘gains’ for the local environment are explored. Wind farms will enhance the biodiversity of areas, could act as refugia for fish, and could be developed in a way that encourages enhancement of fish stocks including shellfish.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mediterranean Sea fisheries supply significant local and international markets, based largely on small pelagic fish, artisanal fisheries and aquaculture of finfish (mainly seabass and seabream) and shellfish (mussels and oysters). Fisheries and aquaculture contribute to the economy of countries bordering this sea and provide food and employment to coastal communities employing ca 600,000 people. Increasing temperatures and heat wave frequency are causing stress and mortality in marine organisms and ocean acidification is expected to worsen these effects, especially for bivalves and coralligenous systems. Recruitment and seed production present possible bottlenecks for shellfish aquaculture in the future since early life stages are vulnerable to acidification and warming. Although adult finfish seem able to withstand the projected increases in seawater CO2, degradation of seabed habitats and increases in harmful blooms of algae and jellyfish might adversely affect fish stocks. Ocean acidification should therefore be factored into fisheries and aquaculture management plans. Rising CO2 levels are expected to reduce coastal biodiversity, altering ecosystem functioning and possibly impacting tourism being the Mediterranean the world’s most visited region. We recommend that ocean acidification is monitored in key areas of the Mediterranean Sea, with regular assessments of the likely socio-economic impacts to build adaptive strategies for the Mediterranean countries concerned.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intensive sampling at the coastal waters of the central Red Sea during a period of thermal stratification, prior to the main seasonal bloom during winter, showed that vertical patches of prokaryotes and microplankton developed and persisted for several days within the apparently density uniform upper layer. These vertical structures were most likely the result of in situ growth and mortality (e.g., grazing) rather than physical or behavioural aggregation. Simulating a mixing event by adding nutrient-rich deep water abruptly triggered dense phytoplankton blooms in the nutrient-poor environment of the upper layer. These findings suggest that vertical structures within the mixed layer provide critical seeding stocks that can rapidly exploit nutrient influx during mixing, leading to winter bloom formation.