34 resultados para Special events


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ascidian Corella eumyota, originally from the Southern Hemisphere, was first reported in the Northern Hemisphere in Brittany, France, in 2002. Since then, it has been recorded in Spain, Ireland, the south coast of England and South Wales. Most European records to date have been from artificial habitats such as marinas. In Plymouth, England, C. eumyota was first found in two marinas in 2005 but individuals were soon also detected in small numbers on nearby shores. Shore surveys in March and August of 2008 indicated that C. eumyota has established reproductive populations on natural and semi-natural shores of Plymouth Sound and the adjacent coastline, largely restricted to relatively sheltered sites in the lower reaches of estuaries. At these sites it is generally the most abundant non-colonial ascidian. The species clearly has the capacity to become a significant component of the biota of sheltered shores in the Northern Hemisphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The AMT (www.amt-uk.org) is a multidisciplinary programme which undertakes biological, chemical, and physical oceanographic research during an annual voyage between the UK and a destination in the South Atlantic such as the Falkland Islands,South Africa, or Chile. This transect of >12,000 km crosses a range of ecosystems from subpolar to tropical, from euphotic shelf seas and upwelling systems, to oligotrophic mid-ocean gyres. The year 2015 has seen two milestones in the history of the AMT: the achievement of 20 years of this unique ocean going programme and the departure of the 25th cruise on the 15th of September. Both of these events were celebrated in June this year with an open science conference hosted by the Plymouth Marine Laboratory (PML) and will be further documented in a special issue of Progress in Oceanography which is planned for publication in 2016. Since 1995, the 25 research cruises have involved 242 sea-going scientists from 66 institutes representing 22 countries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Baltic Sea is a unique environment as the largest body of brackish water in the world. Acidification of the surface oceans due to absorption of anthropogenic CO2 emissions is an additional stressor facing the pelagic community of the already challenging Baltic Sea. To investigate its impact on trace gas biogeochemistry, a large-scale mesocosm experiment was performed off Tvärminne Research Station, Finland in summer 2012. During the second half of the experiment, dimethylsulphide (DMS) concentrations in the highest fCO2 mesocosms (1075–1333 μatm) were 34 % lower than at ambient CO2 (350 μatm). However the net production (as measured by concentration change) of seven halocarbons analysed was not significantly affected by even the highest CO2 levels after 5 weeks exposure. Methyl iodide (CH3I) and diiodomethane (CH2I2) showed 15 % and 57 % increases in mean mesocosm concentration (3.8 ± 0.6 pmol L−1 increasing to 4.3 ± 0.4 pmol L−1 and 87.4 ± 14.9 pmol L−1 increasing to 134.4 ± 24.1 pmol L−1 respectively) during Phase II of the experiment, which were unrelated to CO2 and corresponded to 30 % lower Chl-ɑ concentrations compared to Phase I. No other iodocarbons increased or showed a peak, with mean chloroiodomethane (CH2ClI) concentrations measured at 5.3 (± 0.9) pmol L−1 and iodoethane (C2H5I) at 0.5 (± 0.1) pmol L−1. Of the concentrations of bromoform (CHBr3; mean 88.1 ± 13.2 pmol L−1), dibromomethane (CH2Br2; mean 5.3 ± 0.8 pmol L−1) and dibromochloromethane (CHBr2Cl, mean 3.0 ± 0.5 pmol L−1), only CH2Br2 showed a decrease of 17 % between Phases I and II, with CHBr3 and CHBr2Cl showing similar mean concentrations in both Phases. Outside the mesocosms, an upwelling event was responsible for bringing colder, high CO2, low pH water to the surface starting on day t16 of the experiment; this variable CO2 system with frequent upwelling events implies the community of the Baltic Sea is acclimated to regular significant declines in pH caused by up to 800 μatm fCO2. After this upwelling, DMS concentrations declined, but halocarbon concentrations remained similar or increased compared to measurements prior to the change in conditions. Based on our findings, with future acidification of Baltic Sea waters, biogenic halocarbon emissions are likely to remain at similar values to today, however emissions of biogenic sulphur could significantly decrease from this region.