33 resultados para Shark fishing
Resumo:
Interest in animal personalities has generated a burgeoning literature on repeatability in individual traits such as boldness or exploration through time or across different contexts. Yet, repeatability can be influenced by the interactive social strategies of individuals, for example, consistent inter-individual variation in aggression is well documented. Previous work has largely focused on the social aspects of repeatability in animal behaviour by testing individuals in dyadic pairings. Under natural conditions, individuals interact in a heterogeneous polyadic network. However, the extent to which there is repeatability of social traits at this higher order network level remains unknown. Here, we provide the first empirical evidence of consistent and repeatable animal social networks. Using a model species of shark, a taxonomic group in which repeatability in behaviour has yet to be described, we repeatedly quantified the social networks of ten independent shark groups across different habitats, testing repeatability in individual network position under changing environments. To understand better the mechanisms behind repeatable social behaviour, we also explored the coupling between individual preferences for specific group sizes and social network position. We quantify repeatability in sharks by demonstrating that despite changes in aggregation measured at the group level, the social network position of individuals is consistent across treatments. Group size preferences were found to influence the social network position of individuals in small groups but less so for larger groups suggesting network structure, and thus, repeatability was driven by social preference over aggregation tendency.
Resumo:
1.Methods of sensitivity assessment to identify species and habitats in need of management or protection have been available since the 1970s. 2.The approach to sensitivity assessment adopted by the Marine Life Information Network (MarLIN) assumes that the sensitivity of a community or biotope is dependent on the species within it. However, the application of this approach to sedimentary communities, especially offshore, is complex because of a lack of knowledge of the structural or functional role of many sedimentary species. 3.This paper describes a method to assess the overall sensitivity of sedimentary communities, based on the intolerance and recoverability of component species to physical disturbance. A range of methods were applied to identify the best combinations of abundant, dominant or high biomass species for the assessment of sensitivity in the sedimentary communities examined. 4.Results showed that reporting the most frequent species' sensitivity assessment, irrespective of the four methods used to select species, consistently underestimated the total sensitivity of the community. In contrast, reporting the most sensitive assessment from those species selected resulted in a range of biotope sensitivities from very low to very high, that was better able to discriminate between the sensitivities of the communities examined. 5.The assumptions behind the methodology, its limitations and potential application are discussed.