116 resultados para SOLAR ABUNDANCE
Resumo:
The vertical distribution, seasonal and ontogenetic migrations and seasonal variability in abundance of Thysanoessa longicaudata (Krøyer) were investigated using the Longhurst-Hardy Plankton Recorder for a 4 yr period (March, 1971 to May, 1975) at Ocean Weather Station “I” (59°00′N; 19°00′W) in the north-eastern Atlantic Ocean. Of 8 species of euphausiids identified at this position, the vast majority were T. longicaudata (for example, 99.5% of the total euphausiids in 1972 belonged to this species). From March to October the majority of calyptopes, furciliae and adults of T. longicaudata were found in the upper 100 m. The major spawning occurred in spring at a water temperature of 9° to 10°C and calyptopes and furciliae appeared in late April, reaching their maximum abundance in May. There was no evidence of large-scale diurnal migrations, although an extensive ontogenetic migration of young developmental stages was observed. The eggs were found from 100 m down to 800 m, the maximum depth of sampling, and the vertical distribution of the three naupliar stages showed a “developmental ascent” as they matured. During the main reproductive period in May, over 70% of all nauplii were below 500 m while more than 94% of Calyptopis Stage I were above 500 m with their maximum abundance in the euphotic zone (0 to 50 m). Calyptopis Stage I is the first feeding stage and it is this stage which shows the largest ontogenetic migration. Brief descriptions of the egg and nauplii are given.
Continuous Plankton Records - Persistence In Time-Series Of Annual Means Of Abundance Of Zooplankton
Resumo:
Time-series of annual means of abundance of zooplankton of the north-east Atlantic Ocean and the North Sea, for the period 1948 to 1977, show considerable associations between successive years. The seasonal dynamics of the stocks appear to be consistent with at least a proportion of this being due to inherent persistence from year-to-year. Experiments with a simple model suggest that the observed properties of the time-series cannot be reproduced as a response to simple random forcing. The extent of trends and long wavelength variations can be simulated by introducing fairly extensive persistence into the perturbations, but this underestimates the extent of shorter wavelength variability in the observed time-series. The effect of persistence is to increase the proportion of trend and long wavelength variability in time-series of annual means, but stocks can respond to short wavelength perturbations provided these have a clearly defined frequency.