40 resultados para Richardson, Airon
Resumo:
The genus Oithona is considered the most ubiquitous and abundant copepod group in the world oceans. Although they generally make-up a lower proportion of the total copepod biomass, because of their high numerical abundance, preferential feeding for microzooplankton and motile preys, Oithona spp. plays an important role in microbial food webs and can provide a food source for other planktonic organisms. Thus, changes in Oithona spp. overall abundance and the timing of their annual maximum (i.e. phenology) can have important consequences for both energy flow within marine food webs and secondary production. Using the long term data (1954-2005) collected by the Continuous Plankton Recorder (CPR), the present study, investigates whether global climate warming my have affected the long term trends in Oithona spp. population abundance and phenology in relation to biotic and abiotic variables and over a wide latitudinal range and diverse oceanographic regions in the Atlantic, Pacific and Southern Ocean.
Resumo:
Long-term biological time-series in the oceans are relatively rare. Using the two longest of these we show how the information value of such ecological time-series increases through space and time in terms of their potential policy value. We also explore the co-evolution of these oceanic biological time-series with changing marine management drivers. Lessons learnt from reviewing these sequences of observations provide valuable context for the continuation of existing time-series and perspective for the initiation of new time-series in response to rapid global change. Concluding sections call for a more integrated approach to marine observation systems and highlight the future role of ocean observations in adaptive marine management.
Resumo:
A number of explanations have been advanced to account for the increased frequency and intensity at which jellyfish (pelagic cnidarians and ctenophores) blooms are being observed, most of which have been locally directed. Here, we investigate seasonal and inter-annual patterns in abundance and distribution of jellyfish in the North Atlantic Ocean to determine if there have been any system-wide changes over the period 1946–2005, by analysing records of the presence of coelenterates from the Continuous Plankton Recorder (CPR) survey. Peaks in jellyfish abundance are strongly seasonal in both oceanic and shelf areas: oceanic populations have a mid-year peak that is more closely related to peaks in phyto- and zooplankton, whilst the later peak of shelf populations mirrors changes in SST and reflects processes of advection and aggregation. There have been large amplitude cycles in the abundance of oceanic and shelf jellyfish (although not synchronous) over the last 60 years, with a pronounced synchronous increase in abundance in both areas over the last 10 years. Inter-annual variations in jellyfish abundance in oceanic areas are related to zooplankton abundance and temperature changes, but not to the North Atlantic Oscillation or to a chlorophyll index. The long-term inter-annual abundance of jellyfish on the shelf could not be explained by any environmental variables investigated. As multi-decadal cycles and more recent increase in jellyfish were obvious in both oceanic and shelf areas, we conclude that these are likely to reflect an underlying climatic signal (and bottom-up control) rather than any change in fishing pressure (top-down control). Our results also highlight the role of the CPR data in investigating long-term changes in jellyfish, and suggest that the cnidarians sampled by the CPR are more likely to be holoplanktic hydrozoans and not the much larger meroplanktic scyphozoans as has been suggested previously.
Resumo:
Genetic analysis of Continuous Plankton Recorder (CPR) samples is enabling greater taxonomic resolution and the study of plankton population structure. Here, we present some results from the genetic analysis of CPR samples collected in the North Sea and north-eastern Atlantic that reveal the impacts of climate on benthic-pelagic coupling and the food web. We show that pronounced changes in the North Sea meroplankton are related to an increased abundance and spatial distribution of the larvae of the benthic echinoderm, Echinocardium cordatum. Key stages of reproduction in E. cordatum, gametogenesis and spawning, are influenced by winter and spring sea temperature (January-May). A stepwise increase in sea temperature after 1987, which has created warmer conditions earlier in the year, together with increased summer phytoplankton, may benefit the reproduction and survival of this benthic species. Competition between the larvae of E. cordatum and other holozooplanlcton taxa may now be altering the trophodynamics of the summer pelagic ecosystem. In the north-eastern Atlantic the genetic analysis of fish larvae sampled by the CPR has revealed an unprecedented increase in the abundance of juvenile snake pipefish, Entelurus aequoreiis since 2002. We argue that increased sea surface temperatures in winter and spring when the eggs of E. aqueoreus, which are brooded by the male, are developing and the young larvae are growing in the plankton are a likely cause. The increased abundance of this species in Atlantic and adjacent European seas already appears to be influencing the marine food web.
Resumo:
Changes in phytoplankton dynamics influence marine biogeochemical cycles, climate processes, and food webs, with substantial social and economic consequences. Large-scale estimation of phytoplankton biomass was possible via ocean colour measurements from two remote sensing satellites – the Coastal Zone Color Scanner (CZCS, 1979-1986) and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS, 1998-2010). Due to the large gap between the two satellite eras and differences in sensor characteristics, comparison of the absolute values retrieved from the two instruments remains challenging. Using a unique in situ ocean colour dataset that spans more than half a century, the two satellite-derived chlorophyll-a (Chl-a) eras are linked to assess concurrent changes in phytoplankton variability and bloom timing over the Northeast Atlantic Ocean and North Sea. Results from this unique re-analysis reflect a clear increasing pattern of Chl-a, a merging of the two seasonal phytoplankton blooms producing a longer growing season and higher seasonal biomass, since the mid-1980s. The broader climate plays a key role in Chl-a variability as the ocean colour anomalies parallel the oscillations of the Northern Hemisphere Temperature (NHT) since 1948.
Resumo:
Deriving maps of phytoplankton taxa based on remote sensing data using bio-optical properties of phytoplankton alone is challenging. A more holistic approach was developed using artificial neural networks, incorporating ecological and geographical knowledge together with ocean color, bio-optical characteristics, and remotely sensed physical parameters. Results show that the combined remote sensing approach could discriminate four major phytoplankton functional types (diatoms, dinoflagellates, coccolithophores, and silicoflagellates) with an accuracy of more than 70%. Models indicate that the most important information for phytoplankton functional type discrimination is spatio-temporal information and sea surface temperature. This approach can supply data for large-scale maps of predicted phytoplankton functional types, and an example is shown.
Resumo:
An overview is provided of the observed and potential future responses of zooplankton communities to global warming. I begin by describing the importance of zooplankton in ocean ecosystems and the attributes that make them sensitive beacons of climate change. Global warming may have even greater repercussions for marine ecosystems than for terrestrial ecosystems, because temperature influences water column stability, nutrient enrichment, and the degree of new production, and thus the abundance, size composition, diversity, and trophic efficiency of zooplankton. Pertinent descriptions of physical changes in the ocean in response to climate change are given as a prelude to a detailed discussion of observed impacts of global warming on zooplankton. These manifest as changes in the distribution of individual species and assemblages, in the timing of important life-cycle events, and in abundance and community structure. The most illustrative case studies, where climate has had an obvious, tangible impact on zooplankton and substantial ecosystem consequences, are presented. Changes in the distribution and phenology of zooplankton are faster and greater than those observed for terrestrial groups. Relevant projected changes in ocean conditions are then presented, followed by an exploration of potential future changes in zooplankton communities from the perspective of different modelling approaches. Researchers have used a range of modelling approaches on individual species and functional groups forced by output from climate models under future greenhouse gas emission scenarios. I conclude by suggesting some potential future directions in climate change research for zooplankton, viz. the use of richer zooplankton functional groups in ecosystem models; greater research effort in tropical systems; investigating climate change in conjunction with other human impacts; and a global zooplankton observing system.
Resumo:
Ocean acidification may negatively affect calcifying plankton, opening ecological space for non-calcifying species. Recently, a study of climate-forcing of jellyfish reported the first analysis suggesting that there were more jellyfish (generally considered a noncalcifying group) when conditions were more acidic (lower pH) from one area within the North Sea. We examine this suggestion for a number of areas in the North Sea and beyond in the Northeast Atlantic using coelenterate records from the Continuous Plankton Recorder and pH data from the International Council for the Exploration of the Sea for the period 1946-2003. We could find no significant relationships between jellyfish abundance and acidic conditions in any of the regions investigated. We conclude that the role of pH in structuring zooplankton communities in the North Sea and further afield at present is tenuous.
Resumo:
Tropical marginal seas (TMSs) are natural subregions of tropical oceans containing biodiverse ecosystems with conspicuous, valued, and vulnerable biodiversity assets. They are focal points for global marine conservation because they occur in regions where human populations are rapidly expanding. Our review of 11 TMSs focuses on three key ecosystems—coral reefs and emergent atolls, deep benthic systems, and pelagic biomes—and synthesizes, illustrates, and contrasts knowledge of biodiversity, ecosystem function, interaction between adjacent habitats, and anthropogenic pressures. TMSs vary in the extent that they have been subject to human influence—from the nearly pristine Coral Sea to the heavily exploited South China and Caribbean Seas—but we predict that they will all be similarly complex to manage because most span multiple national jurisdictions. We conclude that developing a structured process to identify ecologically and biologically significant areas that uses a set of globally agreed criteria is a tractable first step toward effective multinational and transboundary ecosystem management of TMSs.