71 resultados para Resistencia global
Resumo:
Sustainable development depends on maintaining ecosystem services which are concentrated in coastal marine and estuarine ecosystems. Analyses of the science needed to manage human uses of ecosystem services have concentrated on terrestrial ecosystems. Our focus is on the provision of multidisciplinary data needed to inform adaptive, ecosystem-based approaches (EBAs) for maintaining coastal ecosystem services based on comparative ecosystem analyses. Key indicators of pressures on coastal ecosystems, ecosystem states and the impacts of changes in states on services are identified for monitoring and analysis at a global coastal network of sentinel sites nested in the ocean-climate observing system. Biodiversity is targeted as the “master” indicator because of its importance to a broad spectrum of services. Ultimately, successful implementation of EBAs will depend on establishing integrated, holistic approaches to ocean governance that oversee the development of integrated, operational ocean observing systems based on the data and information requirements specified by a broad spectrum of stakeholders for sustainable development. Sustained engagement of such a spectrum of stakeholders on a global scale is not feasible. The global coastal network will need to be customized locally and regionally based on priorities established by stakeholders in their respective regions. The E.U. Marine Strategy Framework Directive and the U.S. Recommendations of the Interagency Ocean Policy Task Force are important examples of emerging regional scale approaches. The effectiveness of these policies will depend on the co-evolution of ocean policy and the observing system under the auspices of integrated ocean governance.
Resumo:
Modeling of global climate change is moving from global circulation model (GCM)-type projections with coupled biogeochemical models to projections of ecological responses, including food web and upper trophic levels. Marine and coastal ecosystems are highly susceptible to the impacts of global climate change and also produce significant ecosystem services. The effects of global climate change on coastal and marine ecosystems involve a much wider array of effects than the usual temperature, sea level rise, and precipitation. This paper is an overview for a collection of 12 papers that examined various aspects of global climate change on marine ecosystems and comprise this special issue. We summarized the major features of the models and analyses in the papers to determine general patterns. A wide range of ecosystems were simulated using a diverse set of modeling approaches. Models were either 3-dimensional or used a few spatial boxes, and responses to global climate change were mostly expressed as changes from a baseline condition. Three issues were identified from the across-model comparison: (a) lack of standardization of climate change scenarios, (b) the prevalence of site-specific and even unique models for upper trophic levels, and (c) emphasis on hypothesis evaluation versus forecasting. We discuss why these issues are important as global climate change assessment continues to progress up the food chain, and, when possible, offer some initial steps for going forward.
Resumo:
The absorption spectra of phytoplankton in the visible domain hold implicit information on the phytoplankton community structure. Here we use this information to retrieve quantitative information on phytoplankton size structure by developing a novel method to compute the exponent of an assumed power-law for their particle-size spectrum. This quantity, in combination with total chlorophyll-a concentration, can be used to estimate the fractional concentration of chlorophyll in any arbitrarily-defined size class of phytoplankton. We further define and derive expressions for two distinct measures of cell size of mixed. populations, namely, the average spherical diameter of a bio-optically equivalent homogeneous population of cells of equal size, and the average equivalent spherical diameter of a population of cells that follow a power-law particle-size distribution. The method relies on measurements of two quantities of a phytoplankton sample: the concentration of chlorophyll-a, which is an operational index of phytoplankton biomass, and the total absorption coefficient of phytoplankton in the red peak of visible spectrum at 676 nm. A sensitivity analysis confirms that the relative errors in the estimates of the exponent of particle size spectra are reasonably low. The exponents of phytoplankton size spectra, estimated for a large set of in situ data from a variety of oceanic environments (similar to 2400 samples), are within a reasonable range; and the estimated fractions of chlorophyll in pico-, nano- and micro-phytoplankton are generally consistent with those obtained by an independent, indirect method based on diagnostic pigments determined using high-performance liquid chromatography. The estimates of cell size for in situ samples dominated by different phytoplankton types (diatoms, prymnesiophytes, Prochlorococcus, other cyanobacteria and green algae) yield nominal sizes consistent with the taxonomic classification. To estimate the same quantities from satellite-derived ocean-colour data, we combine our method with algorithms for obtaining inherent optical properties from remote sensing. The spatial distribution of the size-spectrum exponent and the chlorophyll fractions of pico-, nano- and micro-phytoplankton estimated from satellite remote sensing are in agreement with the current understanding of the biogeography of phytoplankton functional types in the global oceans. This study contributes to our understanding of the distribution and time evolution of phytoplankton size structure in the global oceans.