255 resultados para Reason and environment
Resumo:
Plankton collected by the Continuous Plankton Recorder (CPR) survey were investigated for the English Channel, Celtic Sea and Bay of Biscay from 1979 to 1995. The main goal was to study the relationship between climate and plankton and to understand the factors influencing it. In order to take into account the spatial and temporal structure of biological data, a three-mode principal component analysis (PCA) was developed. It not only identified 5 zones characterised by their similar biological composition and by the seasonal and inter-annual evolution of the plankton, it also made species associations based on their location and year-to-year change. The studied species have stronger year-to-year fluctuations in abundance over the English Channel and Celtic Sea than the species offshore in the Bay of Biscay. The changes in abundance of plankton in the English Channel are negatively related to inter-annual changes of climatic conditions from December to March (North Atlantic Oscillation [NAO] index and air temperature). Thus, the negative relationship shown by Fromentin and Planque (1996; Mar Ecol Prog Ser 134:111-118) between year-to-year changes of Calanus finmarchicus abundance in the northern North Atlantic and North Sea and NAO was also found for the most abundant copepods in the Channel. However, the hypothesis proposed to explain the plankton/NAO relationship is different for this region and a new hypothesis is proposed. In the Celtic Sea, a relationship between the planktonic assemblage and the air temperature was detected, but it is weaker than for the English Channel. No relationship was found for the Bay of Biscay. Thus, the local physical environment and the biological composition of these zones appear to modify the relationship between winter climatic conditions and the year-to-year fluctuations of the studied planktonic species. This shows, therefore, that the relationship between climate and plankton is difficult to generalise.
Resumo:
This paper examines long term changes in the plankton of the North Atlantic and northwest European shelf seas and discusses the forcing mechanisms behind some observed interannual, decadal and spatial patterns of variability with a focus on climate change. Evidence from the Continuous Plankton Records suggests that the plankton integrates hydrometeorological signals and may be used as a possible index of climate change. Changes evident in the plankton are likely to have important effects on the carrying capacity of fisheries and are of relvance to eutrophication issues and to the assessment of biodiversity. The scale of the changes seen over the past five decades emphasises the importance of maintaining existing, and establishing new, long term and wide scale monitoring programmes of the world's oceans in initiatives such as the Global Ocean Observing System (GOOS).
Resumo:
In 2000 a Review of Current Marine Observations in relation to present and future needs was undertaken by the Inter-Agency Committee for Marine Science and Technology (IACMST). The Marine Environmental Change Network (MECN) was initiated in 2002 as a direct response to the recommendations of the report. A key part of the current phase of the MECN is to ensure that information from the network is provided to policy makers and other end-users to enable them to produce more accurate assessments of ecosystem state and gain a clearer understanding of factors influencing change in marine ecosystems. The MECN holds workshops on an annual basis, bringing together partners maintaining time-series and long-term datasets as well as end-users interested in outputs from the network. It was decided that the first workshop of the MECN continuation phase should consist of an evaluation of the time series and data sets maintained by partners in the MECN with regard to their ‘fit for purpose’ for answering key science questions and informing policy development. This report is based on the outcomes of the workshop. Section one of the report contains a brief introduction to monitoring, time series and long-term datasets. The various terms are defined and the need for MECN type data to complement compliance monitoring programmes is discussed. Outlines are also given of initiatives such as the United Kingdom Marine Monitoring and Assessment Strategy (UKMMAS) and Oceans 2025. Section two contains detailed information for each of the MECN time series / long-term datasets including information on scientific outputs and current objectives. This information is mainly based on the presentations given at the workshop and therefore follows a format whereby the following headings are addressed: Origin of time series including original objectives; current objectives; policy relevance; products (advice, publications, science and society). Section three consists of comments made by the review panel concerning all the time series and the network. Needs or issues highlighted by the panel with regard to the future of long-term datasets and time-series in the UK are shown along with advice and potential solutions where offered. The recommendations are divided into 4 categories; ‘The MECN and end-user requirements’; ‘Procedures & protocols’; ‘Securing data series’ and ‘Future developments’. Ever since marine environmental protection issues really came to the fore in the 1960s, it has been recognised that there is a requirement for a suitable evidence base on environmental change in order to support policy and management for UK waters. Section four gives a brief summary of the development of marine policy in the UK along with comments on the availability and necessity of long-term marine observations for the implementation of this policy. Policy relating to three main areas is discussed; Marine Conservation (protecting biodiversity and marine ecosystems); Marine Pollution and Fisheries. The conclusion of this section is that there has always been a specific requirement for information on long-term change in marine ecosystems around the UK in order to address concerns over pollution, fishing and general conservation. It is now imperative that this need is addressed in order for the UK to be able to fulfil its policy commitments and manage marine ecosystems in the light of climate change and other factors.
Resumo:
The North Sea is one of the most biologically productive ecosystems in the world and supports important fisheries. Climate-induced changes occurred in the pelagic ecosystems of the North Sea during the 1980s. These changes, which have been observed from phytoplankton to fish and among permanent (holoplankton) and temporary (meroplankton) plankton species, have resulted in alterations in plankton community composition and seasonality. Until now, the effects of climate-driven changes on biological linkages between pelagic and benthic ecosystems have not been examined. The present study indicates that changes in benthic organisms could have a profound effect on the trophodynamics of the pelagos. We demonstrate this by analyses of a long-term time series of North Sea plankton and sea surface temperature data. We discover that pronounced changes in the North Sea meroplankton, mainly related to an increased abundance and spatial distribution of the larvae of a benthic echinoderm, Echinocardium cordatum, result primarily from a stepwise increase in sea temperature after 1987 that has caused warmer conditions to occur earlier in the year than previously. Key stages of reproduction in E. cordatum, gametogenesis and spawning, appear to be influenced by winter and spring sea temperature and their larval development is affected by the quantity and quality of their phytoplankton food. Our analyses suggest that a new thermal regime in the North Sea in winter and spring may have benefited reproduction and survival in this benthic species. As a result, E. cordatum may be altering the trophodynamics of the summer pelagic ecosystem through competition between its larvae and holozooplankton taxa.
Resumo:
Several environmental/physical variables derived from satellite and in situ data sets were used to understand the variability of coccolithophore abundance in the subarctic North Atlantic. The 7-yr (1997–2004) time-series analysis showed that the combined effects of high solar radiation, shallow mixed layer depth (<20 m), and increased temperatures explained >89% of the coccolithophore variation. The June 1998 bloom, which was associated with high light intensity, unusually high sea-surface temperature, and a very shallow mixed layer, was found to be one of the most extensive (>995,000 km2) blooms ever recorded. There was a pronounced sea-surface temperature shift in the mid-1990s with a peak in 1998, suggesting that exceptionally large blooms are caused by pronounced environmental conditions and the variability of the physical environment strongly affects the spatial extent of these blooms. Consequently, if the physical environment varies, the effects of these blooms on the atmospheric and oceanic environment will vary as well.