53 resultados para North-east India
Resumo:
As the eastward-flowing North Pacific Current approaches the North American continent it bifurcates into the southward-flowing California Current and the northward-flowing Alaska Current. This bifurcation occurs in the south-eastern Gulf of Alaska and can vary in position. Dynamic height data from Project Argo floats have recently enabled the creation of surface circulation maps which show the likely position of the bifurcation; during 2002 it was relatively far north at 53 degrees N then, during early 2003, it moved southwards to a more normal position at 45 degrees N. Two ship-of-opportunity transects collecting plankton samples with a Continuous Plankton Recorder across the Gulf of Alaska were sampled seasonally during 2002 and 2003. Their position was dependent on the commercial ship's operations; however, most transects sampled across the bifurcation. We show that the oceanic plankton differed in community composition according to the current system they occurred in during spring and fall of 2002 and 2003, although winter populations were more mixed. Displacement of the plankton communities could have impacts on the plankton's reproduction and development if they use cues such as day length, and also on foraging of higher trophic-level organisms that use particular regions of the ocean if the nutritional value of the communities is different. Although we identify some indicator taxa for the Alaska and California currents, functional differences in the plankton communities on either side of the bifurcation need to be better established to determine the impacts of bifurcation movement on the ecosystems of the north-east Pacific.
Resumo:
There is an accumulating body of evidence to suggest that many marine ecosystems in the North Atlantic, both physically and biologically are responding to changes in regional climate caused predominately by the warming of air and sea surface temperatures (SST) and to a varying degree by the modification of oceanic currents, precipitation regimes and wind patterns. The biological manifestations of rising SST and oceanographic changes have variously taken the form of biogeographical, phenological, physiological and community changes. For example, during the last 40 years there has been a northerly movement of warmer water plankton by 10 degree latitude in the north-east Atlantic and a similar retreat of colder water plankton to the north. This geographical movement is much more pronounced than any documented terrestrial study, presumably due to advective processes playing an important role. Other research has shown that the plankton community in the North Sea has responded to changes in SST by adjusting their seasonality (in some cases a shift in seasonal cycles of over six weeks has been detected), but more importantly the response to climate warming varied between different functional groups and trophic levels, leading to mismatch. Therefore, while it has been documented that marine ecosystems in certain regions of the Atlantic have undergone some conspicuous changes over the last few decades it is not known whether this is a pan-oceanic homogenous response. Using these two most prominent responses and/or indicative signals of pelagic ecosystems to hydro-climatic change, changes in species phenology and the biogeographical movement of populations, we attempt to identify vulnerable regional areas in terms of particularly rapid and marked change.
Resumo:
Pronounced changes in fauna, extending from the English Channel in the south to the Barents Sea in the north-east and off Greenland in the north-west, have occurred in the late 1920s, the late 1960s and again in the late 1990s. We attribute these events to exchanges of subarctic and subtropical water masses in the north-eastern North Atlantic Ocean, associated with changes in the strength and extent of the subpolar gyre. These exchanges lead to variations in the influence exerted by the subarctic or Lusitanian biomes on the intermediate faunistic zone in the north-eastern Atlantic. This strong and persistent bottom-up bio-physical link is demonstrated using a numerical ocean general circulation model and data on four trophically connected levels in the food chain – phytoplankton, zooplankton, blue whiting, and pilot whales. The plankton data give a unique basin-scale depiction of these changes, and a long pilot whale record from the Faroe Islands offers an exceptional temporal perspective over three centuries. Recent advances in simulating the dynamics of the subpolar gyre suggests a potential for predicting the distribution of the main faunistic zones in the north-eastern Atlantic a few years into the future, which might facilitate a more rational management of the commercially important fisheries in this region.
Resumo:
Comprehensive, aggregate nutrient budgets were established for two compartments of the North Sea, the shallow coastal and deeper open regions, and for three different periods, representing pre-eutrophication (∼1950), eutrophication (∼1990) and contemporary (∼2000) phases. The aim was to quantify the major budget components, to identify their sources of variability, to specify the anthropogenic components, and to draw implications for past and future policy. For all three periods, open North Sea budgets were dominated (75%) by fluxes from and to the North-East Atlantic; sediment exchange was of secondary importance (18%). For the coastal North Sea, fluxes during the eutrophication period were dominated by sediment exchange (49% of all inputs), followed by exchange with the open sea (21%), and anthropogenic inputs (19%). Between 1950 and 1990, N-loading of coastal waters increased by a factor of 1.62 and P-loading by 1.45. These loads declined after 1990. Interannual variability in Atlantic inflow was found to correspond to a variability of 11% in nutrient load to the open North Sea. Area-specific external loads of both the open and coastal North Sea were below Vollenweider-type critical loads when expressed relative to depth and flushing. External area-specific load of the coastal North Sea has declined since 1990 from 1.8 to about 1.4 g P m−2 y−1 in 2000, which is close to the estimate of 1.3 for 1950. N-load declined less, leading to an increase in N/P ratio.
Resumo:
In this paper we present the first decadal reanalysis simulation of the biogeochemistry of the North West European shelf, along with a full evaluation of its skill and value. An error-characterized satellite product for chlorophyll was assimilated into a physical-biogeochemical model of the North East Atlantic, applying a localized Ensemble Kalman filter. The results showed that the reanalysis improved the model predictions of assimilated chlorophyll in 60% of the study region. Model validation metrics showed that the reanalysis had skill in matching a large dataset of in situ observations for ten ecosystem variables. Spearman rank correlations were significant and higher than 0.7 for physical-chemical variables (temperature, salinity, oxygen), ∼0.6 for chlorophyll and nutrients (phosphate, nitrate, silicate), and significant, though lower in value, for partial pressure of dissolved carbon dioxide (∼0.4). The reanalysis captured the magnitude of pH and ammonia observations, but not their variability. The value of the reanalysis for assessing environmental status and variability has been exemplified in two case studies. The first shows that between 340,000-380,000 km2 of shelf bottom waters were oxygen deficient potentially threatening bottom fishes and benthos. The second application confirmed that the shelf is a net sink of atmospheric carbon dioxide, but the total amount of uptake varies between 36-46 Tg C yr−1 at a 90% confidence level. These results indicate that the reanalysis output dataset can inform the management of the North West European shelf ecosystem, in relation to eutrophication, fishery, and variability of the carbon cycle.
Resumo:
Movements of wide-ranging top predators can now be studied effectively using satellite and archival telemetry. However, the motivations underlying movements remain difficult to determine because trajectories are seldom related to key biological gradients, such as changing prey distributions. Here, we use a dynamic prey landscape of zooplankton biomass in the north-east Atlantic Ocean to examine active habitat selection in the plankton-feeding basking shark Cetorhinus maximus. The relative success of shark searches across this landscape was examined by comparing prey biomass encountered by sharks with encounters by random-walk simulations of ‘model’ sharks. Movements of transmitter-tagged sharks monitored for 964 days (16754km estimated minimum distance) were concentrated on the European continental shelf in areas characterized by high seasonal productivity and complex prey distributions. We show movements by adult and sub-adult sharks yielded consistently higher prey encounter rates than 90% of random-walk simulations. Behavioural patterns were consistent with basking sharks using search tactics structured across multiple scales to exploit the richest prey areas available in preferred habitats. Simple behavioural rules based on learned responses to previously encountered prey distributions may explain the high performances. This study highlights how dynamic prey landscapes enable active habitat selection in large predators to be investigated from a trophic perspective, an approach that may inform conservation by identifying critical habitat of vulnerable species.
Resumo:
We review current knowledge and understanding of the biology and ecology of the calanoid copepod Calanus helgolandicus in European waters, as well as provide a collaborative synthesis of data from 18 laboratories and 26 sampling stations in areas distributed from the northern North Sea to the Aegean and Levantine Seas. This network of zooplankton time-series stations has enabled us to collect and synthesise seasonal and multi-annual data on abundance, body size, fecundity, hatching success and vertical distribution of C. helgolandicus. An aim was to enable comparison with its congener Calanus finmarchicus, which has been studied intensively as a key component of European and north east Atlantic marine ecosystems. C. finmarchicus is known to over-winter at depth, whereas the life-cycle of C. helgolandicus is less well understood. Overwintering populations of C. helgolandicus have been observed off the Atlantic coast between 400 and 800 m, while in the Mediterranean there is evidence of significant deep-water populations at depths as great as 4200 m. The biogeographical distribution of C. helgolandicus in European coastal waters covers a wide range of habitats, from open ocean to coastal environments, and its contribution to mesozooplankton biomass ranges from 6% to 93%. Highest abundances were recorded in the Adriatic and off the west coast of Spain. C. helgolandicus is generally found in 9-20 C water, with maximum abundances from 13-17 C. In contrast, C. finmarchicus is found in cooler water between 0 and 15 C, with peak abundances from 0 to 9 C. As water has warmed in the North Atlantic over recent decades, the range of C. helgolandicus and its abundance on the fringes of its expanding range have increased. This review will facilitate development of population models of C. helgolandicus. This will not only help answer remaining questions but will improve our ability to forecast future changes, in response to a warming climate, in the abundance and distribution of this important species.
Resumo:
An individual-based model (IBM) for the simulation of year-to-year survival during the early life-history stages of the north-east Atlantic stock of mackerel (Scomber scombrus) was developed within the EU funded Shelf-Edge Advection, Mortality and Recruitment (SEAMAR) programme. The IBM included transport, growth and survival and was used to track the passive movement of mackerel eggs, larvae and post-larvae and determine their distribution and abundance after approximately 2 months of drift. One of the main outputs from the IBM, namely distributions and numbers of surviving post-larvae, are compared with field data as recruit (age-0/age-1 juveniles) distribution and abundance for the years 1998, 1999 and 2000. The juvenile distributions show more inter-annual and spatial variability than the modelled distributions of survivors; this may be due to the restriction of using the same initial egg distribution for all 3 yr of simulation. The IBM simulations indicate two main recruitment areas for the north-east Atlantic stock of mackerel, these being Porcupine Bank and the south-eastern Bay of Biscay. These areas correspond to areas of high juvenile catches, although the juveniles generally have a more widespread distribution than the model simulations. The best agreement between modelled data and field data for distribution (juveniles and model survivors) is for the year 1998. The juvenile catches in different representative nursery areas are totalled to give a field abundance index (FAI). This index is compared with a model survivor index (MSI) which is calculated from the total of survivors for the whole spawning season. The MSI compares favourably with the FAI for 1998 and 1999 but not for 2000; in this year, juvenile catches dropped sharply compared with the previous years but there was no equivalent drop in modelled survivors.
Resumo:
In the more than 50 years that the Continuous Plankton Recorder (CPR) survey has operated on a regular monthly basis in the north-east Atlantic and North Sea, large changes have been witnessed in the planktonic ecosystem. These changes have taken the form of long-term trends in abundance for certain species or stepwise changes for others, and in many cases are correlated with a mode of climatic variability in the North Atlantic, either: (1) the North Atlantic Oscillation (NAO), a basin-scale atmospheric alteration of the pressure field between the Azores high pressure cell and the Icelandic Low; or (2) the Gulf Stream Index (GSI), which measures the latitudinal position of the north wall of the Gulf Stream. Recent work has shown that the changes in the GSI are coupled with the NAO and Pacific Southern Oscillation with a 2 year lag. The plankton variability is also possibly linked to changes observed in the distribution and flux of water masses in the surface, intermediate and deep waters of the North Atlantic. For example, in the last two decades, the extent and location of the formation of North Atlantic Deep Water, Labrador Sea Intermediate Water and Norwegian Sea intermediate and upper-layer water has altered considerably. This paper discusses the extent to which observed changes in plankton abundance and distribution may be linked to this basin-scale variability in hydrodynamics. The results are also placed within the context of global climate warming and the possible effects of the observed melting of Arctic permafrost and sea ice on the subpolar North Atlantic.
Resumo:
The distribution of the warm-water barnacle, Balanus perforatus, was surveyed along the south coast of England and the north-east coast of France between 1993 and 2001, repeating work carried out between the 1940s and 1960s. The species has recovered from catastrophic mortality during the severe winter of 1962–1963 and was found over 120 km (UK) and 190 km (France) east of previous records on both sides of the Channel. The presence of the species in the eastern Channel refutes suggestions in the 1950s that larvae, and hence adults, would not be found east of the Isle of Wight because of reproductive sterility close to the limits of distribution. Brooding of specimens translocated to Bembridge, Isle of Wight, commenced in May, earlier than previously observed in British waters, and continued until September. The stage of embryo development at Bembridge in mid-August was comparable to that of the large population at Lyme Regis, Dorset 100 km further west. However the size of brood per standard body weight was greater at Lyme Regis. Factors influencing the rate of colonization and further geographic range extension of the species as a possible result of climate change, are discussed.
Resumo:
Rates of population increase in early spring and the sizes of overwintering stocks were calculated for the planktonic copepods Pseudocalanus elongatus and Acartia clausi for a set of areas covering the open waters of the north-east Atlantic Ocean and the North Sea for the period 1948 to 1979. For both species, the rates of population increase were higher in the open ocean than in the North Sea and appear to be related to temperature. The overwintering stocks in the North Sea were larger than those in the open ocean and are probably related to phytoplanton concentration. P. elongatus shows higher overwintering stocks and lower rates of population increase than A. clausi, resulting in different levels of persistence in the stocks of the two species. It is suggested that this difference in persistence is responsible for differences between the two species with respect to geographical distribution in summer and different patterns of year-to-year fluctuations in abundance.
Continuous Plankton Records - Persistence In Time-Series Of Annual Means Of Abundance Of Zooplankton
Resumo:
Time-series of annual means of abundance of zooplankton of the north-east Atlantic Ocean and the North Sea, for the period 1948 to 1977, show considerable associations between successive years. The seasonal dynamics of the stocks appear to be consistent with at least a proportion of this being due to inherent persistence from year-to-year. Experiments with a simple model suggest that the observed properties of the time-series cannot be reproduced as a response to simple random forcing. The extent of trends and long wavelength variations can be simulated by introducing fairly extensive persistence into the perturbations, but this underestimates the extent of shorter wavelength variability in the observed time-series. The effect of persistence is to increase the proportion of trend and long wavelength variability in time-series of annual means, but stocks can respond to short wavelength perturbations provided these have a clearly defined frequency.
Resumo:
Transuranium radionuclides (Pu, Am and Cm) present in effluents discharged into the north-east Irish Sea by British Nuclear Fuels Limited, Windscale, Cumbria, UK, are found in sediment and biota of the Esk estuary ~10 km to the south. The site of the present investigation was at Newbiggin and the materials examined were suspended particulate debris samples at the sea surface, bottom sediments and some forms of biota collected in September 1977. It is shown here that hot particles (defined as small volumes of material emitting a particles recorded in a dielectric detector as dense clusters of tracks from a common origin) found in the estuary are likely to be original effluent debris derived from the processing of Magnox uranium fuel elements and not formed in situ as a result of natural processes common to the estuary.
Resumo:
Assessment of the quality of the marine environment forms an important part of the new 1992 OSPAR Convention for the Protection of the Marine Environment of the North-East Atlantic that was ratified and entered into force on 25 March 1998. In the ministerial statement at the signing of the Convention it was agreed that the first assessment (Quality Status Report, QSR) for all Convention waters should be produced for the year 2000. To oversee this charge a new Environmental Assessment and Monitoring Committee (ASMO) was established and a junior group under this committee, to implement necessary actions, the Assessment Co-ordination Group (ACG). Because of the wide geographical diversity and varying levels of information available in different parts of the Convention area it was decided to produce five regional reports for: I The Arctic; II The North Sea; III The Celtic seas; IV The Bay of Biscay and Iberian Coast; V The Wider Atlantic, which will be synthesised in a holistic QSR for the year 2000. The report for the North Sea will largely be an update of QSR 1993 and forms the third cycle of a developing management system for the North Sea. This paper will present the procedures that have been adopted to implement the QSRs, and outlines the guidelines that have been developed for their structure, format, design and publication.
Resumo:
Chlorophyll-a satellite products are routinely used in oceanography, providing a synoptic and global view of phytoplankton abundance. However, these products lack information on the community structure of the phytoplankton, which is crucial for ecological modelling and ecosystem studies. To assess the usefulness of existing methods to differentiate phytoplankton functional types (PFT) or phytoplankton size classes from satellite data, in-situ phytoplankton samples collected in the Western Iberian coast, on the North-East Atlantic, were analysed for pigments and absorption spectra. Water samples were collected in five different locations, four of which were located near the shore and another in an open-ocean, seamount region. Three different modelling approaches for deriving phytoplankton size classes were applied to the in situ data. Approaches tested provide phytoplankton size class information based on the input of pigments data (Brewin et al., 2010), absorption spectra data (Ciotti et al., 2002) or both (Uitz et al., 2008). Following Uitz et al. (2008), results revealed high variability in microphytoplankton chlorophyll-specific absorption coefficients, ranging from 0.01 to 0.09 m2 (mg chl)− 1 between 400 and 500 nm. This spectral analysis suggested, in one of the regions, the existence of small cells (< 20 μm) in the fraction of phytoplankton presumed to be microphytoplankton (based on diagnostic pigments). Ciotti et al. (2002) approach yielded the highest differences between modelled and measured absorption spectra for the locations where samples had high variability in community structure and cell size. The Brewin et al. (2010) pigment-based model was adjusted and a set of model coefficients are presented and recommended for future studies in offshore water of the Western Iberian coast.