81 resultados para Food Contaminants
Relationships Between Seston Available Food And Feeding-Activity In The Common Mussel Mytilus-Edulis
Resumo:
The feeding and metabolic rates of Mytilus edulis L. of different body sizes were measured in response to changes in particle concentrations ranging from 2 to 350 mg l-1. Rates of oxygen consumption were not significantly affected by changes in seston concentration, whereas clearance rates gradually declined with increasing particle concentration. Pseudofaeces production was initiated at relatively low seston concentrations (<5 mg l-1). Marked seasonal changes were recorded in the composition of suspended particulates (seston) in an estuary in south-west England. Total seston was sampled at frequent intervals throughout an annual cycle and analysed in terms of: particle size-frequency distributions, total dry weight (mg l-1), inorganic content, chlorophyll a, carbohydrate, protein and lipid. The particulate carbohydrate, protein and lipid content provided an estimate of the food content of the seston. The results are discussed in terms of the “food available” to a nonselective suspension feeder, such as M. edulis, during a seasonal cycle. The effect of inorganic silt in suspension was mainly to limit by “dilution” the amount of food material ingested rather than to reduce the amount of material filtered by the mussel. In winter, the food content of the material ingested was 5%, and this increased to 25% during the spring and summer.
Resumo:
Multivariate experiments are used to study the effects of body size, food concentration, and season on the oxygen consumption, ammonia excretion, food assimilation efficiency and filtration rate of Mytilus edulis adults. Food concentrations and season affect both the intercept and the slope of the allometric equation describing oxygen uptake as a function of body size. Multiple regression and response surface techniques are used to describe and illustrate the complex relationship between metabolic rate, ration, season and the body size of M. edulis. Filtration rate has a relatively low weight exponent Q> = 038) and the intercept for the allometric equation is not significantly affected by food concentration, season or acclimation temperatures between 5 and 20 °C. Food assimilation efficiency declines exponentially with increasing food concentration and is dependent on body size at high food levels. The rate of ammonia excretion shows a similar seasonal cycle to that of oxygen consumption. They are both minimal in the autumn/winter and reach a maximum in the spring /summer.
Resumo:
We frequently require sensitive bioassay techniques with which to study the effects of marine contaminants at environmentally realistic concentrations. Unfortunately, it is difficult to achieve sensitivity and precision in an organism amenable to indefinite periods of laboratory culture. Results from different laboratories are often extremely variable: LC50 values for the same substance, using the same organism, may differ by two or even three orders of magnitude (Wilson, Cowell & Beynon, 1975). Moreover, some of the most sensitive bioassay organisms require nutrient media, which may alter the availability and toxicity of metals by complexing them (Jones, 1964; Kamp-Nielsen, 1971; Hannan & Patouillet, 1972) and often contain metal impurities at significant levels (Albert, 1968; Steeman Nielsen & Wium Anderson, 1970). The object of the work reported here has been to develop a technique by which these problems might be minimized or avoided. Hydroids were chosen as bioassay organisms for a variety of reasons. They are tolerant but sensitive to small variations in their chemical environment. Techniques for growing hydroids are simple and they can be cultured under conditions of near optimal temperature, salinity and food supply, thus minimizing the errors frequent in bioassay work arising from variations in the history of the test organisms, their size, sex or physiological state. An important source of variability in all work with organisms is that inherent in the genetic material, but with hydroids this can be avoided by the use of a single clone.