38 resultados para Fatality Rates


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The smallest phototrophic protists (<3 μm) are important primary producers in oligotrophic subtropical gyres – the Earth's largest ecosystems. In order to elucidate how these protists meet their inorganic nutrient requirements, we compared the phosphate uptake rates of plastidic and aplastidic protists in the phosphate-depleted subtropical and tropical North Atlantic (4–29°N) using a combination of radiotracers and flow cytometric sorting on two Atlantic Meridional Transect cruises. Plastidic protists were divided into two groups according to their size (<2 and 2–3 μm). Both groups of plastidic protists showed higher phosphate uptake rates per cell than the aplastidic protists. Although the phosphate uptake rates of protist cells were on average seven times (P<0.001) higher than those of bacterioplankton, the biomass-specific phosphate uptake rates of protists were one fourth to one twentieth of an average bacterioplankton cell. The unsustainably low biomass-specific phosphate uptake by both plastidic and aplastidic protists suggests the existence of a common alternative means of phosphorus acquisition – predation on phosphorus-rich bacterioplankton cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent changes in the seasonal timing (phenology) of familiar biological events have been one of the most conspicuous signs of climate change. However, the lack of a standardized approach to analysing change has hampered assessment of consistency in such changes among different taxa and trophic levels and across freshwater, terrestrial and marine environments. We present a standardized assessment of 25 532 rates of phenological change for 726 UK terrestrial, freshwater and marine taxa. The majority of spring and summer events have advanced, and more rapidly than previously documented. Such consistency is indicative of shared large scale drivers. Furthermore, average rates of change have accelerated in a way that is consistent with observed warming trends. Less coherent patterns in some groups of organisms point to the agency of more local scale processes and multiple drivers. For the first time we show a broad scale signal of differential phenological change among trophic levels; across environments advances in timing were slowest for secondary consumers, thus heightening the potential risk of temporal mismatch in key trophic interactions. If current patterns and rates of phenological change are indicative of future trends, future climate warming may exacerbate trophic mismatching, further disrupting the functioning, persistence and resilience of many ecosystems and having a major impact on ecosystem services.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents a methods evaluation and intercalibration of active fluorescence-based measurements of the quantum yield ( inline image) and absorption coefficient ( inline image) of photosystem II (PSII) photochemistry. Measurements of inline image, inline image, and irradiance (E) can be scaled to derive photosynthetic electron transport rates ( inline image), the process that fuels phytoplankton carbon fixation and growth. Bio-optical estimates of inline image and inline image were evaluated using 10 phytoplankton cultures across different pigment groups with varying bio-optical absorption characteristics on six different fast-repetition rate fluorometers that span two different manufacturers and four different models. Culture measurements of inline image and the effective absorption cross section of PSII photochemistry ( inline image, a constituent of inline image) showed a high degree of correspondence across instruments, although some instrument-specific biases are identified. A range of approaches have been used in the literature to estimate inline image and are evaluated here. With the exception of ex situ inline image estimates from paired inline image and PSII reaction center concentration ( inline image) measurements, the accuracy and precision of in situ inline image methodologies are largely determined by the variance of method-specific coefficients. The accuracy and precision of these coefficients are evaluated, compared to literature data, and discussed within a framework of autonomous inline image measurements. This study supports the application of an instrument-specific calibration coefficient ( inline image) that scales minimum fluorescence in the dark ( inline image) to inline image as both the most accurate in situ measurement of inline image, and the methodology best suited for highly resolved autonomous inline image measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Meroplankton are seasonally important contributors to the zooplankton, particularly at inshore sites, yet their feeding ecology is poorly known relative to holoplankton. While several studies have measured feeding in decapod larvae, few studies have examined the feeding rates of decapod larvae on natural prey assemblages throughout the reproductive season. We conducted 8 feeding experiments with Necora puber, Liocarcinus spp. and Upogebia spp. zoea larvae collected from the L4 monitoring site off Plymouth (50°15.00′N, 4°13.02′W) during spring–summer 2009 and 2010. This period spanned moderate-to-high food availability (0.5–1.6 µg chl-a L−1), but a great range in food composition with small cells <20 µm dominating in 2010. Daily rations averaged 17, 60 and 22 % of body C for the 3 respective decapod species. Clearance rates differed according to prey type, and all 3 decapod genera showed evidence of selection of dinoflagellates. Importantly, small cells including nano- and pico-plankton were ingested, this being demonstrated independently by flow cytometric analysis of the feeding experiments and molecular analysis. PCR-based analysis of the haptophyte portion of the diet revealed ingestion of Isochrysis galbana by decapod larvae in the bottle incubations and Isochrysis galbana and Phaeocystis globosa by decapod larvae collected directly from the field. This study has shown that pico- and nano-sized plankton form an important supplement to the diverse and variable diet of decapod larvae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plastic debris is a widespread contaminant, prevalent in aquatic ecosystems across the globe. Zooplankton readily ingest microscopic plastic (microplastic, < 1 mm), which are later egested within their faecal pellets. These pellets are a source of food for marine organisms, and contribute to the oceanic vertical flux of particulate organic matter as part of the biological pump. The effects of microplastics on faecal pellet properties are currently unknown. Here we test the hypotheses that (1) faecal pellets are a vector for transport of microplastics, (2) polystyrene microplastics can alter the properties and sinking rates of zooplankton egests and, (3) faecal pellets can facilitate the transfer of plastics to coprophagous biota. Following exposure to 20.6 μm polystyrene microplastics (1000 microplastics mL–1) and natural prey (∼1650 algae mL–1) the copepod Calanus helgolandicus egested faecal pellets with significantly (P < 0.001) reduced densities, a 2.25-fold reduction in sinking rates, and a higher propensity for fragmentation. We further show that microplastics, encapsulated within egests of the copepod Centropages typicus, could be transferred to C. helgolandicus via coprophagy. Our results support the proposal that sinking faecal matter represents a mechanism by which floating plastics can be vertically transported away from surface waters.