47 resultados para Developments on North Indian Scripts


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have examined the inter- and intra-group seasonal succession of 113 diatom and dinoflagellate taxa, as surveyed by the Continuous Plankton Recorder (CPR) in the North Atlantic, by grouping taxa according to two key functional traits: cell size (mg C cell21) and trophic strategy (photoautotrophy, mixotrophy, or heterotrophy). Mixotrophic dinoflagellates follow photoautotrophic diatoms but precede their obligate heterotrophic counterparts in the succession because of the relative advantages afforded by photosynthesizing when light and nutrients are available in spring. The mean cell size of the sampled diatoms is smallest in the summer, likely because of the higher specific nutrient affinity of smaller relative to larger cells. Contrastingly, we hypothesize that mixotrophy diminishes the size selection based on nutrient limitation and accounts for the lack of a seasonal size shift among surveyed dinoflagellates. Relatively small, heterotrophic dinoflagellates (mg C cell21 , 1023) peak after other, larger dinoflagellates, in part because of the increased abundance of their small prey during nutrientdeplete summer months. The largest surveyed diatoms (mg C cell21 . 1022) bloom later than others, and we hypothesize that this may be because of their relatively slow maximum potential growth rates and high internal nutrient storage, as well as to the slower predation of these larger cells. The new trait database and analysis presented here helps translate the taxonomic information of the CPR survey into metrics that can be directly compared with trait-based models.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study aimed to determine the role of light on the succession of the phytoplankton community during the spring bloom in the northwestern Mediterranean Sea. To this end, three successive Lagrangian experiments were carried out between March and April 2003. The three experiments correspond to distinct phases of the bloom development (pre-bloom, bloom peak and post-bloom, respectively) and therefore to different trophic conditions. Phytoplankton (sampled on a daily scale) was grouped in size-based classes (pico and nano+micro) each of them were characterised in terms of chemotaxonomic composition, primary production and photophysiological properties. The phytoplankton community evolved with time changing in both size-class dominance and specie/group dominance within each size class. The bloom peak was characterised by highly dynamic condition (i.e. vertical mixing) and by the dominance of both small (pico) and large (nano and micro) diatoms, as a result of their capacity to photoacclimate to changing light regimes (‘physiological plasticity’). Concluding, we suggest that the physiological adaptation to light is the main factor driving the succession of the phytoplankton community during the first phases of the bloom (until the onset of thermal stratification) in the western Mediterranean Sea.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present investigation reviews published data on the feeding rates and prey selection of Oithona similis females, Calanus finmarchicus nauplii and females in the Irminger Sea in April/May and July/August 2002. Our aim was to examine how the feeding rates and prey selection of these three copepod stages respond to concomitant changes in microplankton community composition and prey abundance. Copepods typically ingested prey overall according to its ambient concentration although significant species and stage-specific differences in prey-type ingestion and selection were apparent. Despite being of comparable weight, the ingestion rates of C. finmarchicus nauplii were always higher than those of the O. similis females. Moreover, C. finmarchicus nauplii and O. similis females fed preferentially on diatoms and ciliates respectively, whereas adult female C. finmarchicus showed limited prey selectivity. Copepod grazing impact on total and on ciliates/dinoflagellates standing stock was <0.5 and <2%, respectively. We attribute this result to a combination of low grazing rates, low copepod abundance and low microplankton biomass, all of which are indicative of the non-bloom conditions under which these experiments were conducted. The differences in copepod feeding rates and prey selection we report reflect species and stage-specific eco-physiological adaptations, which may act as important driving forces for marine ecosystem structuring and functioning.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Phytoplankton phenology and community structure in the western North Pacific were investigated for 2001–2009, based on satellite ocean colour data and the Continuous Plankton Recorder survey. We estimated the timing of the spring bloom based on the cumulative sum satellite chlorophyll adata, and found that the Pacific Decadal Oscillation (PDO)-related interannual SST anomaly in spring significantly affected phytoplankton phenology. The bloom occurred either later or earlier in years of positive or negative PDO (indicating cold and warm conditions, respectively). Phytoplankton composition in the early summer varied depending on the magnitude of seasonal SST increases, rather than the SST value itself. Interannual variations in diatom abundance and the relative abundance of non-diatoms were positively correlated with SST increases for March–April and May–July, respectively, suggesting that mixed layer environmental factors, such as light availability and nutrient stoichiometry, determine shifts in phytoplankton community structure. Our study emphasised the importance of the interannual variation in climate-induced warm–cool cycles as one of the key mechanisms linking climatic forcing and lower trophic level ecosystems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The relationship between climate, represented by the North Atlantic Oscillation (NAO), and the calanoid copepod Calanus finmarchicus has been extensively studied. The correlation between NAO and C. finmarchicus has broken down (post-1995). In the present study, we revisit the relationship between C. finmarchicus and the NAO. Our reanalysis shows that previous treatment of this data did not take into account 2 aspects of both the C. finmarchicus and NAO index time-series: (1) the presence of significant trends and (2) significant autocorrelation. Our analysis suggests that previously reported relationships between NAO and C. finmarchicus abundance can be explained largely by the trends in both data series. Removing the trend from both time-series resulted in a decrease in the amount of C. finmarchicus abundance variability explained by the NAO. Trend removal eliminated the autocorrelation from the NAO time-series, but not from the C. finmarchicus time-series. Partial autocorrelation analysis showed that the autocorrelation present in the C. finmarchicus time-series is only found at a lag of 1 yr, suggesting strong, year-to-year connectivity in this population. We included the lagged C. finmarchicus abundance into a regression with the NAO and found that C. finmarchicus variability is explained by the previous year’s abundance and, to a much smaller extent, by NAO variability. Limiting the time-series to the most recent 22 yr period (1981 to 2002) showed that the NAO is no longer correlated to C. finmarchicus abundance, and the autocorrelation in the C. finmarchicus abundance series also appears to be weakening.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Analyses of long-term time series of North Sea plankton and sea surface temperature (SST) data reveal that the annual planktonic larval abundance of three benthic phyla, Echinodermata, Arthropoda, and Mollusca, responds positively and immediately to SST. Long-term outcomes for the planktonic abundance of these three phyla are different, however. The planktonic larvae of echinoderms and decapod crustaceans have increased in abundance from 1958 to 2005, and especially since the mid-1980s, as North Sea SST has increased. In contrast, the abundance of bivalve mollusc larvae has declined, despite the positive year-to-year relationship between temperature and bivalve larval abundance continuing to hold. We argue that the changes in meroplankton abundance, coincident with increased phytoplankton and declining holoplankton, reflect the synchronous effect of rising SST and related changes in the pelagic community on the reproduction and recruitment of many benthic marine invertebrates. Under this scenario, the long-term decline in bivalve mollusc larvae will reflect increased predation on the settled larvae and adults by benthic decapods. These alterations in the zooplankton may therefore describe an ecosystem-wide restructuring of North Sea trophic interactions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The circulation of Atlantic water along the European continental slope, in particular the inflow into the North Sea, influences North Sea water characteristics with consequent changes in the environment affecting plankton community dynamics. The long-term effect of fluctuating oceanographic conditions oil the North Sea, pelagic ecosystem is assessed. It is shown that (i) there are similar regime shifts in the inflow through the northern North Sea and in Sea, Surface Temperature, (ii) long-term phytoplankton trends are influenced by the inflow only in some North Sea regions, and (iii) the spatial variability in chemicophysical and biological parameters highlight the influence of smaller scale processes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We study the spatial and seasonal variability of phytoplankton biomass (as phytoplankton color) in relation to the environmental conditions in the North Sea using data from the Continuous Plankton Recorder survey. By using only environmental fields and location as predictor variables we developed a nonparametric model (generalized additive model) to empirically explore how key environmental factors modulate the spatio-temporal patterns of the seasonal cycle of algal biomass as well as how these relate to the ,1988 North Sea regime shift. Solar radiation, as manifest through changes of sea surface temperature (SST), was a key factor not only in the seasonal cycle but also as a driver of the shift. The pronounced increase in SST and in wind speed after the 1980s resulted in an extension of the season favorable for phytoplankton growth. Nutrients appeared to be unimportant as explanatory variables for the observed spatio-temporal pattern, implying that they were not generally limiting factors. Under the new climatic regime the carrying capacity of the whole system has been increased and the southern North Sea, where the environmental changes have been more pronounced, reached a new maximum.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The patterns of copepod species richness (S) and their relationship with phytoplankton productivity, temperature and environmental stability were investigated at climatological, seasonal and year-to-year time scales as well as scales along latitudinal and oceanic–neritic gradients using monthly time series of the Continuous Plankton Recorder (CPR) Survey collected in the North East Atlantic between 1958 and 2006. Time series analyses confirmed previously described geographic patterns. Equatorward and towards neritic environments, the climatological average of S increases and the variance explained by the seasonal cycle decreases. The bi-modal character of seasonality increases equatorward and the timing of the seasonal cycle takes place progressive earlier equatorward and towards neritic environments. In the long-term, the climatological average of S decreased significantly (p < 0.001) between 1958 and 2006 in the Bay of Biscay and North Iberian shelf at a rate of ca. 0.04 year−1, and increased at the same rate between 1991 and 2006 in the northernmost oceanic location. The climatological averages of S correlate positively with those of the index of seasonality of phytoplankton productivity (ratio between the minimum and maximum monthly values of surface chlorophyll) and sea surface temperature, and negatively with those of the proxy for environmental stability (monthly frequency of occurrence of daily averaged wind speed exceeding 10 m s−1). The seasonal cycles of S and phytoplankton productivity (surface chlorophyll as proxy) exhibit similar features in terms of shape, timing and explained variance, but the relationship between the climatological averages of both variables is non-significant. From year-to-year, the annual averages of S correlate negatively with those of phytoplankton productivity and positively with those of sea surface temperature along the latitudinal gradient, and negatively with those of environmental stability along the oceanic–neritic gradient. The annual anomalies of S (i.e. factoring out geographic variation) show a unimodal relationship with those of sea surface temperature and environmental stability, with S peaking at intermediate values of the anomalies of these variables. The results evidence the role of seasonality of phytoplankton productivity on the control of copepod species richness at seasonal and climatological scales, giving support to the species richness–productivity hypothesis. Although sea surface temperature (SST) is indeed a good predictor of richness along the latitudinal gradient, it is unable to predict the increase of richness form oceanic to neritic environments, thus lessening the generality of the species richness–energy hypothesis. Meteo-hydrographic disturbances (i.e. SST and wind speed anomalies as proxies), presumably through its role on mixed layer depth dynamics and turbulence and hence productivity, maximise local diversity when occurring at intermediate frequency and or intensity, thus providing support to the intermediate disturbance hypothesis on the control of copepod diversity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Although the physical and chemical principles that explain the warming of the Earth’s system resulting from emissions of CO2 and other greenhouse gases were understood at the end of the 19th century (Tyndall, 1861; Arrhenius, 1896) and at the beginning of the 20th century (Callendar, 1938), it was almost 100 years later, in the mid‐1980s, before it was realized that these processes were contributing to a rapid change in climate. The potential consequences of this global warming have still to be revealed and are difficult to anticipate.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The assimilation and regeneration of dissolved inorganic nitrogen, and the concentration of N2O, was investigated at stations located in the NW European shelf sea during June/July 2011. These observational measurements within the photic zone demonstrated the simultaneous regeneration and assimilation of NH4+, NO2− and NO3−. NH4+ was assimilated at 1.82–49.12 nmol N L−1 h−1 and regenerated at 3.46–14.60 nmol N L−1 h−1; NO2− was assimilated at 0–2.08 nmol N L−1 h−1 and regenerated at 0.01–1.85 nmol N L−1 h−1; NO3− was assimilated at 0.67–18.75 nmol N L−1 h−1 and regenerated at 0.05–28.97 nmol N L−1 h−1. Observations implied that these processes were closely coupled at the regional scale and nitrogen recycling played an important role in sustaining phytoplankton growth during the summer. The [N2O], measured in water column profiles, was 10.13 ± 1.11 nmol L−1 and did not strongly diverge from atmospheric equilibrium indicating that sampled marine regions where neither a strong source nor sink of N2O to the atmosphere. Multivariate analysis of data describing water column biogeochemistry and its links to N-cycling activity failed to explain the observed variance in rates of N-regeneration and N-assimilation, possibly due to the limited number of process rate observations. In the surface waters of 5 further stations, Ocean Acidification (OA) bioassay experiments were conducted to investigate the response of NH4+ oxidising and regenerating organisms to simulated OA conditions, including the implications for [N2O]. Multivariate analysis was undertaken which considered the complete bioassay dataset of measured variables describing changes in N-regeneration rate, [N2O] and the biogeochemical composition of seawater. While anticipating biogeochemical differences between locations, we aimed to test the hypothesis that the underlying mechanism through which pelagic N-regeneration responded to simulated OA conditions was independent of location and that a mechanistic understanding of how NH4+ oxidation, NH4+ regeneration and N2O production responded to OA could be developed. Results indicated that N-regeneration process responses to OA treatments were location specific; no mechanistic understanding of how N-regeneration processes respond to OA in the surface ocean of the NW European shelf sea could be developed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The increase in atmospheric CO2 is a dual threat to the marine environment: from one side it drives climate change, leading to modifications in water temperature, circulation patterns and stratification intensity; on the other side it causes a decrease in marine pH (ocean acidification, or OA) due to the increase in dissolved CO2. Assessing the combined impact of climate change and OA on marine ecosystems is a challenging task. The response of the ecosystem to a single driver can be highly variable and remains still uncertain; additionally the interaction between these can be either synergistic or antagonistic. In this work we use the coupled oceanographic–ecosystem model POLCOMS-ERSEM driven by climate forcing to study the interaction between climate change and OA. We focus in particular on carbonate chemistry, primary and secondary production. The model has been run in three different configurations in order to assess separately the impacts of climate change on net primary production and of OA on the carbonate chemistry, which have been strongly supported by scientific literature, from the impact of biological feedbacks of OA on the ecosystem, whose uncertainty still has to be well constrained. The global mean of the projected decrease of pH at the end of the century is about 0.27 pH units, but the model shows significant interaction among the drivers and high variability in the temporal and spatial response. As a result of this high variability, critical tipping point can be locally and/or temporally reached: e.g. undersaturation with respect to aragonite is projected to occur in the deeper part of the central North Sea during summer. Impacts of climate change and of OA on primary and secondary production may have similar magnitude, compensating in some area and exacerbating in others.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The assimilation and regeneration of dissolved inorganic nitrogen, and the concentration of N2O, was investigated at stations located in the NW European shelf sea during June/July 2011. These observational measurements within the photic zone demonstrated the simultaneous regeneration and assimilation of NH4+, NO2− and NO3−. NH4+ was assimilated at 1.82–49.12 nmol N L−1 h−1 and regenerated at 3.46–14.60 nmol N L−1 h−1; NO2− was assimilated at 0–2.08 nmol N L−1 h−1 and regenerated at 0.01–1.85 nmol N L−1 h−1; NO3− was assimilated at 0.67–18.75 nmol N L−1 h−1 and regenerated at 0.05–28.97 nmol N L−1 h−1. Observations implied that these processes were closely coupled at the regional scale and nitrogen recycling played an important role in sustaining phytoplankton growth during the summer. The [N2O], measured in water column profiles, was 10.13 ± 1.11 nmol L−1 and did not strongly diverge from atmospheric equilibrium indicating that sampled marine regions where neither a strong source nor sink of N2O to the atmosphere. Multivariate analysis of data describing water column biogeochemistry and its links to N-cycling activity failed to explain the observed variance in rates of N-regeneration and N-assimilation, possibly due to the limited number of process rate observations. In the surface waters of 5 further stations, Ocean Acidification (OA) bioassay experiments were conducted to investigate the response of NH4+ oxidising and regenerating organisms to simulated OA conditions, including the implications for [N2O]. Multivariate analysis was undertaken which considered the complete bioassay dataset of measured variables describing changes in N-regeneration rate, [N2O] and the biogeochemical composition of seawater. While anticipating biogeochemical differences between locations, we aimed to test the hypothesis that the underlying mechanism through which pelagic N-regeneration responded to simulated OA conditions was independent of location and that a mechanistic understanding of how NH4+ oxidation, NH4+ regeneration and N2O production responded to OA could be developed. Results indicated that N-regeneration process responses to OA treatments were location specific; no mechanistic understanding of how N-regeneration processes respond to OA in the surface ocean of the NW European shelf sea could be developed.