38 resultados para DIRICHLET PROCESSES
Resumo:
Whilst the biological consequences of long-term, gradual changes in acidity associated with the oceanic uptake of atmospheric carbon dioxide (CO2) are increasingly studied, the potential effects of rapid acidification associated with a failure of sub-seabed carbon storage infrastructure have received less attention. This study investigates the effects of severe short-term (8 days) exposure to acidified seawater on infaunal mediation of ecosystem processes (bioirrigation and sediment particle redistribution) and functioning (nutrient concentrations). Following acidification, individuals of Amphiura filiformis exhibited emergent behaviour typical of a stress response, which resulted in altered bioturbation, but limited changes in nutrient cycling. Under acidified conditions, A. filiformis moved to shallower depths within the sediment and the variability in occupancy depth reduced considerably. This study indicated that rapid acidification events may not be lethal to benthic invertebrates, but may result in behavioural changes that could have longer-term implications for species survival, ecosystem structure and functioning.
Resumo:
While documentation of climate effects on marine ecosystems has a long history, the underlying processes have often been elusive. In this paper we review some of the ecosystem responses to climate variability and discuss the possible mechanisms through which climate acts. Effects of climatological and oceanographic variables, such as temperature, sea ice, turbulence, and advection, on marine organisms are discussed in terms of their influence on growth, distribution, reproduction, activity rates, recruitment and mortality. Organisms tend to be limited to specific thermal ranges with experimental findings showing that sufficient oxygen supply by ventilation and circulation only occurs within these ranges. Indirect effects of climate forcing through effects on the food web are also discussed. Research and data needs required to improve our knowledge of the processes linking climate to ecosystem changes are presented along with our assessment of our ability to predict ecosystem responses to future climate change scenarios. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The Arctic Ocean is one of the fastest changing oceans, plays an important role in global carbon cycling and yet is a particularly challenging ocean to study. Hence, observations tend to be relatively sparse in both space and time. How the Arctic functions, geophysically, but also ecologically, can have significant consequences for the internal cycling of carbon, and subsequently influence carbon export, atmospheric CO2 uptake and food chain productivity. Here we assess the major carbon pools and associated processes, specifically summarizing the current knowledge of each of these processes in terms of data availability and ranges of rates and values for four geophysical Arctic Ocean domains originally described by Carmack & Wassmann (2006): inflow shelves, which are Pacific-influenced and Atlantic-influenced; interior, river-influenced shelves; and central basins. We attempt to bring together knowledge of the carbon cycle with the ecosystem within each of these different geophysical settings, in order to provide specialist information in a holistic context. We assess the current state of models and how they can be improved and/or used to provide assessments of the current and future functioning when observational data are limited or sparse. In doing so, we highlight potential links in the physical oceanographic regime, primary production and the flow of carbon within the ecosystem that will change in the future. Finally, we are able to highlight priority areas for research, taking a holistic pan-Arctic approach.
Resumo:
Coastal processes and wildlife shape the coast into a variety of eye-catching and enticing landforms that attract people to marvel at, relax and enjoy coastal geomorphology. These landforms also influence biological communities by providing habitat and refuge. There are very few field guides to explain these processes to the general public and children. In contrast, there is a relative wealth of resources and organised activities introducing people to coastal wildlife, especially on rocky shores. These biological resources typically focus on the biology and climatic controls on their distribution, rather than how the biology interacts with its physical habitat. As an outcome of two recent rock coast biogeomorphology projects (detailed at: www.biogeomorph.org/coastal) a multi disciplinary team produced the first known guide to understanding how biogeomorphological processes help create coastal landforms. The ‘Shore Shapers’ guide (shoreshapers.org) is designed to: a. bring biotic geomorphic interactions (how animals, algae and microorganisms protect and shape rock) to life and b. introduce some of the geomorphological and geological controls on biogeomorphic processes and landform development. The guide provides scientific information in an accessible and interactive way – to help sustain children’s interest and extend their learning. We tested a draft version of the guide with children,the general public and volunteers on rocky shore rambles using social science techniques and present the findings, alongside initial results of an evaluation of a newer version of the guide and interactive workshops taking place throughout 2014.
Resumo:
Due to the impacts of natural processes and anthropogenic activities, different coastal wetlands are faced with variable patterns of heavy metal contamination. It is important to quantify the contributions of pollutant sources, in order to adopt appropriate protection measures for local ecosystems. The aim of this research was to compare the heavy metal contamination patterns of two contrasting coastal wetlands in eastern China. In addition, the contributions from various metal sources were identified and quantified, and influencing factors, such as the role of the plant Spartina alterniflora, were evaluated. Materials and methods Sediment samples were taken from two coastal wetlands (plain-type tidal flat at the Rudong (RD) wetland vs embayment-type tidal flat at Luoyuan Bay (LY)) to measure the content of Al, Fe, Co, Cr, Cu, Mn, Mo, Ni, Sr, Zn, Pb, Cd, and As. Inductively coupled plasma atomic emission spectrometry, flame atomic absorption spectrometry, and atomic fluorescence spectrometry methods were used for metal detection. Meanwhile, the enrichment factor and geoaccumulation index were applied to assess the pollution level. Principle component analysis and receptor modeling were used to quantify the sources of heavy metals. Results and discussion Marked differences in metal distribution patterns between the two systems were present. Metal contents in LY were higher than those in RD, except for Sr and Mo. The growth status of S. alterniflora influenced metal accumulations in RD, i.e., heavy metals were more easily adsorbed in the sediment in the following sequence: Cu > Cd > Zn > Cr > Al > Pb ≥ Ni ≥ Co > Fe > Sr ≥ Mn > As > Mo as a result of the presence and size of the vegetation. However, this phenomenon was not observed in LY. A higher potential ecological risk was associated with LY, compared with RD, except for Mo. Based on a receptor model output, sedimentary heavy metal contents at RD were jointly influenced by natural sedimentary processes and anthropogenic activities, whereas they were dominated by anthropogenic activities at LY. Conclusions A combination of geochemical analysis and modeling approaches was used to quantify the different types of natural and anthropogenic contributions to heavy metal contamination, which is useful for pollution assessments. The application of this approach reveals that natural and anthropogenic processes have different influences on the delivery and retention of metals at the two contrasting coastal wetlands. In addition, the presence and size of S. alterniflora can influence the level of metal contamination in sedimentary environments.
Resumo:
Of novel sedimentary transformation products of bacteriochlorophyll a, 7,8-didehydro derivatives (Bacterioviridins), has been identified using high performance liquid chromatography with photodiode array detection and atmospheric pressure chemical ionisation liquid chromatography-multistage mass spectrometry. The derivatives occur in a range of sediments including Priest Pot (UK), les Salines de la Trinital, Ebre delta (Spain), Sutton-on-the-Forest (UK) and Certes (France). The Bacterioviridins are products of oxidative transformation of bacteriochlorophyll a, and their presence in sediments indicates exposure of the bacterial community to oxygen.
Resumo:
Physical oceanography is the study of physical conditions, processes and variables within the ocean, including temperature-salinity distributions, mixing of the water column, waves, tides, currents, and air-sea interaction processes. Here we provide a critical review of how satellite sensors are being used to study physical oceanography processes at the ocean surface and its borders with the atmosphere and sea-ice. The paper begins by describing the main sensor types that are used to observe the oceans (visible, thermal infrared and microwave) and the specific observations that each of these sensor types can provide. We then present a critical review of how these sensors and observations are being used to study i) ocean surface currents, ii) storm surges, iii) sea-ice, iv) atmosphere-ocean gas exchange and v) surface heat fluxes via phytoplankton. Exciting advances include the use of multiple sensors in synergy to observe temporally varying Arctic sea-ice volume, atmosphere- ocean gas fluxes, and the potential for 4 dimensional water circulation observations. For each of these applications we explain their relevance to society, review recent advances and capability, and provide a forward look at future prospects and opportunities. We then more generally discuss future opportunities for oceanography-focussed remote-sensing, which includes the unique European Union Copernicus programme, the potential of the International Space Station and commercial miniature satellites. The increasing availability of global satellite remote-sensing observations means that we are now entering an exciting period for oceanography. The easy access to these high quality data and the continued development of novel platforms is likely to drive further advances in remote sensing of the ocean and atmospheric systems.