131 resultados para Copepod parasites
Resumo:
The nematode/copepod ratio is critically examined with a view to adding some precision to its proposed use in pollution ecology. At two unpolluted intertidal sites, differing markedly in sediment grade, the metabolic requirements of copepods are shown to be equivalent to the requirements of that fraction of the nematode population which feeds in the same way. The partitioning of this total energy requirement among individuals depends on the distribution of individual metabolic body sizes and the relative rates of metabolism. The distribution of body sizes is constrained by the sediment granulometry, which affects nematodes and copepods differently. These considerations enable precise predictions of the nematode/copepod ratios expected in unpolluted situations, against which observed ratios can be compared.
Resumo:
The relationships between respiration (R) and body volume (V) for all developmental stages of the harpacticoid copepod Tachidius discipes Giesbrecht have been investigated. The relationships for laboratory-reared animals and animals from the field are significantly different. They are: logR = −0.07 + 1.10 logV for laboratory-reared animals and log R = −0.10 + 0.82 logV for field animals. The effect of temperature on the respiration rate of adult males, over the temperature range 5–20°C, was described by a Q10 of 2.09 ± 0.24. The respiration rate of an adult T. discipes is very similar to that of a similar sized nematode from the same field site and is compared with published data for other harpacticoids.
Resumo:
The occurrence of Mytilicola intestinalis in populations of mussels in south-west England is recorded and compared with previous data. Since 1955 there have been two main changes in the distribution of Mytilicola: (a) it has invaded all the major estuarine mussel populations on the Bristol Channel coast, and (b) many previously uninfested open-coast populations all round the peninsula are now lightly infested. It is suggested that differences in infestation levels between estuarine and open-coast populations of mussels are due primarily to differences in the degree of exposure to wave action although factors such as size, population density and location of the hosts also influence infestation. The chance of the establishment of breeding pairs of Mytilicola depends on the parasite population size and its distribution through the host population.