34 resultados para Bellingshausen Sea, bank west of channel on TMF
Resumo:
The Continuous Plankton Recorder (CPR) dataset on fish larvae has an extensive spatio-temporal coverage that allows the responses of fish populations to past changes in climate variability, including abrupt changes such as regime shifts, to be investigated. The newly available dataset offers a unique opportunity to investigate long-term changes over decadal scales in the abundance and distribution of fish larvae in relation to physical and biological factors. A principal component analysis (PCA) using 7 biotic and abiotic parameters is applied to investigate the impact of environmental changes in the North Sea on 5 selected taxa of fish larvae during the period 1960 to 2004. The analysis revealed 4 periods of time (1960–1976; 1977–1982; 1983–1996; 1997–2004) reflecting 3 different ecosystem states. The larvae of clupeids, sandeels, dab and gadoids seemed to be affected mainly by changes in the plankton ecosystem, while the larvae of migratory species such as Atlantic mackerel responded more to hydrographic changes. Climate variability seems more likely to influence fish populations through bottom-up control via a cascading effect from changes in the North Atlantic Oscillation (NAO) impacting on the hydro dynamic features of the North Sea, in turn impacting on the plankton available as prey for fish larvae. The responses and adaptability of fish larvae to changing environmental conditions, parti cularly to changes in prey availability, are complex and species-specific. This complexity is enhanced with fishing effects interacting with climate effects and this study supports furthering our under - standing of such interactions before attempting to predict how fish populations respond to climate variability
Resumo:
Due to the unprecedented rate at which our climate is changing, the ultimate consequence for many species is likely to be either extinction or migration to an alternate habitat. Certain species might, however, evolve at a rate that could make them resilient to the effects of a rapidly changing environment. This scenario is most likely to apply to species that have large population sizes and rapid generation times, such that the genetic variation required for adaptive evolution can be readily supplied. Emiliania huxleyi (Lohm.) Hay and Mohler (Prymnesiophyceae) is likely to be such a species as it is the most conspicuous extant calcareous phytoplankton species in our oceans with generation times of 1 day−1. Here we report on a validated set of microsatellites, in conjunction with the coccolithophore morphology motif genetic marker, to genotype 93 clonal isolates collected from across the world. Of these, 52 came from a single bloom event in the North Sea collected on the D366 UK Ocean Acidification cruise in June-July 2011. There were 26 multilocus genotypes (MLGs) encountered only once in the North Sea bloom and 8 MLGs encountered twice or up to six times. Each of these repeated MLGs exhibited Psex values of less than 0.05 indicating each repeated MLG was the product of asexual reproduction and not separate meiotic events. In addition, we show that the two most polymorphic microsatellite loci, EHMS37 and P01E05, are reporting on regions likely undergoing rapid genetic drift during asexual reproduction. Despite the small sample size, there were many more repeated genotypes than previously reported for other bloom-forming phytoplankton species, including a previously genotyped E. huxleyi bloom event. This study challenges our current assumption that sex is the predominant mode of reproduction during bloom events. Whilst genetic diversity is high amongst extant populations of E. huxleyi, the root cause for this diversity and ultimate fate of these populations still requires further examination. Nonetheless, we show that certain CMM genotypes are found everywhere; while others appear to have a regional bias.
Resumo:
The effect of pressure on upper ocean free-living bacteria and bacteria attached to rapidly sinking particles was investigated through studying their ability to synthesize DNA and protein by measuring their rate of 3H-thymidine and 3H-leucine incorporation. Studies were carried out on samples from the NE Atlantic under the range of pressures (1–430 atm) encountered by sinking aggregates during their journey to the deep-sea bed. Thymidine and leucine incorporation rates per bacterium attached to sinking particles from 200 m were about six and ten times higher, respectively, than the free-living bacterial assemblage. The ratio of leucine incorporation rate per cell to thymidine incorporation rate per cell was significantly different between the larger attached (18.9:1) and smaller free-living (10.4:1) assemblages. The rates of leucine and thymidine incorporation decreased exponentially with increasing pressure for the free-living and linearly for attached bacteria, while there was no significant influence of pressure on cell numbers. At 100 atm leucine and thymidine incorporation rate per free-living bacterium was reduced to 73 and 20%, respectively, relative to that measured at 1 atm. Pressure of 100 atm reduced leucine and thymidine incorporation per attached bacterium to 94 and 70%, and at 200 atm these rates were reduced to 34 and 51%, respectively, relative to those measured at 1 atm. There was no significant uncoupling of thymidine and leucine incorporation for either the free-living or attached bacterial assemblages with increasing pressure, indicating that the processess of DNA and protein synthesis may be equally affected by increasing pressure. It is therefore unlikely that bacteria, originating from surface waters, attached to rapidly sinking particles play a role in particle remineralization below approximately 1000–2000 m. These results may help to explain the occurrence of relatively fresh aggregates on the deep-sea bed that still contain sufficient organic carbon to fuel the rapid growth of benthic micro-organisms; they also indicate that the effect of pressure on microbial processes may be important in oceanic biogeochemical cycles.
Resumo:
Abstract: The UK Government funded, GB Non-Native Species Information Portal (GBNNSIP) collects and collates data on non-native species in Great Britain making information available online. Resources include a comprehensive register of non-native species and detailed fact sheets for a sub-set, significant to humans or the environment. Reporting of species records are linked to risk analyses, rapid responses and horizon scanning to support the early recognition of threats (Figure 12). The portal has improved flow of new and existing distributional data to the National Biodiversity Network (NBN) to generate distribution maps for the portal. The project is led by the Biological Records Centre and the Marine Biological Association is responsible for marine non-native species within this scheme. The INTERREG IV funded project Marinexus has included professional research and citizen science work, which has fed directly into the portal. The portal outputs and the work of Marinexus have a range of marine governance applications, including supporting work towards MSFD compliance.