43 resultados para Amperometric measurements
Resumo:
We present here vertical fluxes of oxygenated volatile organic compounds (OVOCs) measured with eddy covariance (EC) during the period of March to July 2012 near the southwest coast of the United Kingdom. The performance of the proton-transfer-reaction mass spectrometer (PTR-MS) for flux measurement is characterized, with additional considerations given to the homogeneity and stationarity assumptions required by EC. Observed mixing ratios and fluxes of OVOCs (specifically methanol, acetaldehyde, and acetone) vary significantly with time of day and wind direction. Higher mixing ratios and fluxes of acetaldehyde and acetone are found in the daytime and from the direction of a forested park, most likely due to light-driven emissions from terrestrial plants. Methanol mixing ratio and flux do not demonstrate consistent diel variability, suggesting sources in addition to plants. We estimate air-sea exchange and photochemical rates of these compounds, which are compared to measured vertical fluxes. For acetaldehyde, the mean (1 sigma) mixing ratio of 0.13 (0.02) ppb at night may be maintained by oceanic emission, while photochemical destruction out-paces production during the day. Air-sea exchange and photochemistry are probably net sinks of methanol and acetone in this region. Their nighttime mixing ratios of 0.46 (0.20) and 0.39 (0.08) ppb appear to be affected more by terrestrial emissions and long-distance transport, respectively.
Resumo:
Very short-lived halocarbons are significant sources of reactive halogen in the marine boundary layer, and likely in the upper troposphere and lower stratosphere. Quantifying ambient concentrations in the surface ocean and atmosphere is essential for understanding the atmospheric impact of these trace gas fluxes. Despite the body of literature increasing substantially over recent years, calibration issues complicate the comparison of results and limit the utility of building larger-scale databases that would enable further development of the science (e.g. sea-air flux quantification, model validation, etc.). With this in mind, thirty-one scientists from both atmospheric and oceanic halocarbon communities in eight nations gathered in London in February 2008 to discuss the scientific issues and plan an international effort toward developing common calibration scales (http://tinyurl.com/c9cg58). Here, we discuss the outputs from this meeting, suggest the compounds that should be targeted initially, identify opportunities for beginning calibration and comparison efforts, and make recommendations for ways to improve the comparability of previous and future measurements.
Resumo:
Global ocean phytoplankton biomass (C-phyto) and total particulate organic carbon (POC) stocks have largely been characterized from space using passive ocean color measurements. A space-based light detection and ranging (lidar) system can provide valuable complementary observations for C-phyto and POC assessments, with benefits including day-night sampling, observations through absorbing aerosols and thin cloud layers, and capabilities for vertical profiling through the water column. Here we use measurements from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) to quantify global C-phyto and POC from retrievals of subsurface particulate backscatter coefficients (b(bp)). CALIOP b(bp) data compare favorably with airborne, ship-based, and passive ocean data and yield global average mixed-layer standing stocks of 0.44 Pg C for C-phyto and 1.9 Pg for POC. CALIOP-based C-phyto and POC data exhibit global distributions and seasonal variations consistent with ocean plankton ecology. Our findings support the use of spaceborne lidar measurements for advancing understanding of global plankton systems.
Resumo:
The European Slope Current (SC) is a major section of the warm poleward flow from the Atlantic to the Arctic, which also moderates the exchange of heat, salt, nutrients and carbon between the deep ocean and the European shelf seas. The mean structure of the geostrophic flow, seasonality, interannual variability and long-term trend of SC are appraised with an unprecedented continuous 20-year satellite altimeter dataset. Comparisons with long term in situ data showed a maximum correlation of r2=0.51 between altimeter and Acoustic Doppler Current Profilers (ADCP), with similar results for drogued buoy data. Mean geostrophic currents were appraised more comprehensively than previous attempts, and the paths of 4 branches of the North Atlantic Current (NAC) and positions of 5 eddies in the region were derived quantitatively. A consistent seasonal cycle in the flow of the SC was found at all 8 sections along the European shelf slope, with maximum poleward flow in the winter and minimum in the summer. The seasonal difference in the altimetry current speed amounted to ~8-10 cm s-1 at the northern sections, but only ~5 cm s-1 on the Bay of Biscay slopes. This extended altimeter dataset indicates significant regional and seasonal variations, and has revealed new insights into the interannual variability of the SC. It is shown that there is a peak poleward flow at most positions along a ~2000 km stretch of the continental slope from Portugal to Scotland during 1995-1997, but this did not clearly relate to the extreme negative North Atlantic Oscillation (NAO) in the winter of 1995-1996. The speed of the SC exhibited a long term decreasing trend of ~1% per year. By contrast the NAC showed no significant trend over the 20-year period. Major changes in the NAC occurred three times, and these changes followed decreases in the NAO index.
Resumo:
This study presents a methods evaluation and intercalibration of active fluorescence-based measurements of the quantum yield ( inline image) and absorption coefficient ( inline image) of photosystem II (PSII) photochemistry. Measurements of inline image, inline image, and irradiance (E) can be scaled to derive photosynthetic electron transport rates ( inline image), the process that fuels phytoplankton carbon fixation and growth. Bio-optical estimates of inline image and inline image were evaluated using 10 phytoplankton cultures across different pigment groups with varying bio-optical absorption characteristics on six different fast-repetition rate fluorometers that span two different manufacturers and four different models. Culture measurements of inline image and the effective absorption cross section of PSII photochemistry ( inline image, a constituent of inline image) showed a high degree of correspondence across instruments, although some instrument-specific biases are identified. A range of approaches have been used in the literature to estimate inline image and are evaluated here. With the exception of ex situ inline image estimates from paired inline image and PSII reaction center concentration ( inline image) measurements, the accuracy and precision of in situ inline image methodologies are largely determined by the variance of method-specific coefficients. The accuracy and precision of these coefficients are evaluated, compared to literature data, and discussed within a framework of autonomous inline image measurements. This study supports the application of an instrument-specific calibration coefficient ( inline image) that scales minimum fluorescence in the dark ( inline image) to inline image as both the most accurate in situ measurement of inline image, and the methodology best suited for highly resolved autonomous inline image measurements.
Resumo:
The measurement of phytoplankton carbon (Cphyto) in the field has been a long-sought but elusive goal in oceanography. Proxy measurements of Cphyto have been employed in the past, but are subject to many confounding influences that undermine their accuracy. Here we report the first directly measured Cphyto values from the open ocean. The Cphyto samples were collected from a diversity of environments, ranging from Pacific and Atlantic oligotrophic gyres to equatorial upwelling systems to temperate spring conditions. When compared to earlier proxies, direct measurements of Cphyto exhibit the strongest relationship with particulate backscattering coefficients (bbp) (R2=0.69). Chlorophyll concentration and total particulate organic carbon (POC) concentration accounted for ~20% less variability in Cphyto than bbp. Ratios of Cphyto to Chl a span an order of magnitude moving across and within distinct ecosystems. Similarly, Cphyto:POC ratios were variable with the lowest values coming from productive temperate waters and the highest from oligotrophic gyres. A strong relationship between Cphyto and bbp is particularly significant because bbp is a property retrievable from satellite ocean color measurements. Our results, therefore, are highly encouraging for the global monitoring of phytoplankton biomass from space. The continued application of our Cphyto measurement approach will enable validation of satellite retrievals and contribute to an improved understanding of environmental controls on phytoplankton biomass and physiology.