527 resultados para Marine sciences
Resumo:
We investigated a 100 × 100 km high-salinity region of the North Atlantic subtropical gyre during the Sub-Tropical Atlantic Surface Salinity Experiment/Salinity Processes in the Upper-ocean Regional Study (STRASSE/SPURS) cruise from August 21, 2012, to September 9, 2012. Results showed great variability in sea surface salinity (SSS; over 0.3 psu) in the mesoscale, over 7 cm of total evaporation, and little diapycnal mixing below 36 m depth, the deepest mixed layers encountered. Strong currents in the southwestern part of the domain, and the penetration of freshwater, suggest that advection contributed greatly to salinity evolution. However, it was further observed that a smaller cyclonic structure tucked between the high SSS band and the strongest currents contributed to the transport of high SSS water along a narrow front. Cross-frontal transport by mixing is also a possible cause of summertime reduction of SSS. The observed structure was also responsible for significant southward salt transport over more than 200 km.
Resumo:
The dispersion of a patch of the tracer sulfur hexafluoride (SF6) is used to assess the lateral diffusivity in the coastal waters of the western part of the Gulf of Lion (GoL), northwestern Mediterranean Sea, during the Latex10 experiment (September 2010). Immediately after the release, the spreading of the patch is associated with a strong decrease of the SF6 concentrations due to the gas exchange from the ocean to the atmosphere. This has been accurately quantified, evidencing the impact of the strong wind conditions during the first days of this campaign. Few days after the release, as the atmospheric loss of SF6 decreased, lateral diffusivity coefficient at spatial scales of 10 km has been computed using two approaches. First, the evolution of the patch with time was combined with a diffusion-strain model to obtain estimates of the strain rate (γ = 2.5 10- 6 s- 1) and of the lateral diffusivity coefficient (Kh = 23.2 m2s− 1). Second, a steady state model was applied, showing Kh values similar to the previous method after a period of adjustment between 2 and 4.5 days. This implies that after such period, our computation of Kh becomes insensitive to the inclusion of further straining of the patch. Analysis of sea surface temperature satellite imagery shows the presence of a strong front in the study area. The front clearly affected the dynamics within the region and thus the temporal evolution of the patch. Our results are consistent with previous studies in open ocean and demonstrate the success and feasibility of those methods also under small-scale, rapidly-evolving dynamics typical of coastal environments.
Resumo:
The AMT (www.amt-uk.org) is a multidisciplinary programme which undertakes biological, chemical, and physical oceanographic research during an annual voyage between the UK and a destination in the South Atlantic such as the Falkland Islands,South Africa, or Chile. This transect of >12,000 km crosses a range of ecosystems from subpolar to tropical, from euphotic shelf seas and upwelling systems, to oligotrophic mid-ocean gyres. The year 2015 has seen two milestones in the history of the AMT: the achievement of 20 years of this unique ocean going programme and the departure of the 25th cruise on the 15th of September. Both of these events were celebrated in June this year with an open science conference hosted by the Plymouth Marine Laboratory (PML) and will be further documented in a special issue of Progress in Oceanography which is planned for publication in 2016. Since 1995, the 25 research cruises have involved 242 sea-going scientists from 66 institutes representing 22 countries.
Resumo:
The human-induced rise in atmospheric carbon dioxide since the industrial revolution has led to increasing oceanic carbon uptake and changes in seawater carbonate chemistry, resulting in lowering of surface water pH. In this study we investigated the effect of increasing CO2 partial pressure (pCO2) on concentrations of volatile biogenic dimethylsulfide (DMS) and its precursor dimethylsulfoniopropionate (DMSP), through monoculture studies and community pCO2 perturbation. DMS is a climatically important gas produced by many marine algae: it transfers sulfur into the atmosphere and is a major influence on biogeochemical climate regulation through breakdown to sulfate and formation of subsequent cloud condensation nuclei (CCN). Overall, production of DMS and DMSP by the coccolithophore Emiliania huxleyi strain RCC1229 was unaffected by growth at 900 matm pCO2, but DMSP production normalised to cell volume was 12% lower at the higher pCO2 treatment. These cultures were compared with community DMS and DMSP production during an elevated pCO2 mesocosm experiment with the aim of studying E. huxleyi in the natural environment. Results contrasted with the culture experiments and showed reductions in community DMS and DMSP concentrations of up to 60 and 32% respectively at pCO2 up to 3000 matm, with changes attributed to poorer growth of DMSP-producing nanophytoplankton species, including E. huxleyi, and potentially increased microbial consumption of DMSand dissolvedDMSPat higher pCO2.DMSandDMSPproduction differences between culture and community likely arise from pH affecting the inter-species responses between microbial producers and consumers.
Resumo:
Lipids are key constituents of marine phytoplankton, and some fatty acids (key constituents of lipids) are essential dietary components for secondary producers. However, in natural marine ecosystems the interactions of factors affecting seasonal phytoplankton lipid composition are still poorly understood. The aim of this study was to assess the roles of seasonal succession in phytoplankton community composition and nutrient concentrations, on the lipid composition of the phytoplankton community. Fatty acid and polar lipid composition in seston was measured in surface waters at the time series station L4, an inshore station in the Western English Channel, from January to December 2013. Redundancy analyses (RDA) were used to identify factors (abiotic and biotic) that explained the seasonal variability in phytoplankton lipids. RDA demonstrated that nutrients (namely nitrogen) explained the majority of variation in phytoplankton lipid composition, as well as a smaller explanatory contribution from changes in phytoplankton community composition. The physiological adaptations of the phytoplankton community to nutrient deplete conditions during the summer season when the water column was stratified, was further supported by changes in the polar lipid to phytoplankton biomass ratios (also modelled with RDA) and increases in the lipid to chlorophyll a ratios, which are both indicative of nutrient stress. However, the association of key fatty acid markers with phytoplankton groups e.g. 22:6 n-3 and dinoflagellate biomass (predominant in summer), meant there were no clear seasonal differences in the overall degree of fatty acid saturation, as might have been expected from typical nutrient stress on phytoplankton. Based on the use of polyunsaturated fatty acids (PUFA) as markers of ‘food quality’ for grazers, our results suggest that in this environment high food quality is maintained throughout summer, due to seasonal succession towards flagellated phytoplankton species able to maintain PUFA synthesis under surface layer nutrient depletion.
Resumo:
The distribution and function of many marine species is largely determined by the effect of abiotic drivers on their reproduction and early development, including those drivers associated with elevated CO2 and global climate change. A number of studies have therefore investigated the effects of elevated pCO2 on a range of reproductive parameters, including sperm motility and fertilisation success. To date, most of these studies have not examined the possible synergistic effects of other abiotic drivers, such as the increased frequency of hypoxic events that are also associated with climate change. The present study is therefore novel in assessing the impact that an hypoxic event could have on reproduction in a future high CO2 ocean. Specifically, this study assesses sperm motility and fertilisation success in the sea urchin Paracentrotus lividus exposed to elevated pCO2 for 6 months. Gametes extracted from these pre-acclimated individuals were subjected to hypoxic conditions simulating an hypoxic event in a future high CO2 ocean. Sperm swimming speed increased under elevated pCO2 and decreased under hypoxic conditions resulting in the elevated pCO2 and hypoxic treatment being approximately equivalent to the control. There was also a combined negative effect of increased pCO2 and hypoxia on the percentage of motile sperm. There was a significant negative effect of elevated pCO2 on fertilisation success, and when combined with a simulated hypoxic event there was an even greater effect. This could affect cohort recruitment and in turn reduce the density of this ecologically and economically important ecosystem engineer therefore potentially effecting biodiversity and ecosystem services.
Resumo:
Understanding the mechanisms linking oceanographic processes and marine vertebrate habitat use is critical to effective management of populations of conservation concern. The basking shark Cetorhinus maximus has been shown to associate with oceanographic fronts – physical interfaces at the transitions between water masses – to exploit foraging opportunities resulting from aggregation of zooplankton. However, the scale, significance and variability of these observed associations have not yet been established. Here, we quantify the influence of mesoscale (10s – 100s km) frontal activity on habitat use over timescales of weeks to months. We use animal-mounted archival tracking with composite front mapping via Earth Observation (EO) remote sensing to provide an oceanographic context to individual shark movements. We investigate levels of association with fronts occurring over two spatio-temporal scales, (i) broad-scale seasonally persistent frontal zones and (ii) contemporaneous mesoscale thermal and chl-a fronts. Using random walk simulations and logistic regression within an iterative generalised linear mixed modelling (GLMM) framework, we find that seasonal front frequency is a significant predictor of shark presence. Temporally-matched oceanographic metrics also indicate that sharks demonstrate a preference for productive regions, and associate with contemporaneous thermal and chl-a fronts more frequently than could be expected at random. Moreover, we highlight the importance of cross-frontal temperature change and persistence, which appear to interact to affect the degree of prey aggregation along thermal fronts. These insights have clear implications for understanding the preferred habitats of basking sharks in the context of anthropogenic threat management and marine spatial planning in the northeast Atlantic.
Resumo:
The Shelf Sea Biogeochemistry research programme directly relates to the delivery of the NERC Earth system science theme and aims to provide evidence that supports a number of marine policy areas and statutory requirements, such as the Marine Strategy Framework Directive and Marine and Climate Acts. The shelf seas are highly productive compared to the open ocean, a productivity that underpins more than 90 per cent of global fisheries. Their importance to society extends beyond food production to include issues of biodiversity, carbon cycling and storage, waste disposal, nutrient cycling, recreation and renewable energy resources. The shelf seas have been estimated to be the most valuable biome on Earth, but they are under considerable stress, as a result of anthropogenic nutrient loading, overfishing, habitat disturbance, climate change and other impacts. However, even within the relatively well-studied European shelf seas, fundamental biogeochemical processes are poorly understood. For example: the role of shelf seas in carbon storage; in the global cycles of key nutrients (nitrogen, phosphorus, silicon and iron); and in determining primary and secondary production, and thereby underpinning the future delivery of many other ecosystem services. Improved knowledge of such factors is not only required by marine policymakers; it also has the potential to increase the quality and cost-effectiveness of management decisions at the local, national and international levels under conditions of climate change. The Shelf Sea Biogeochemistry research programme will take a holistic approach to the cycling of nutrients and carbon and the controls on primary and secondary production in UK and European shelf seas, to increase understanding of these processes and their role in wider biogeochemical cycles. It will thereby significantly improve predictive marine biogeochemical and ecosystem models over a range of scales. The scope of the programme includes exchanges with the open ocean (transport on and off the shelf to a depth of around 500m), together with cycling, storage and release processes on the shelf slope, and air-sea exchange of greenhouse gases (carbon dioxide and nitrous oxide). The DY021 cruise is the first of the 2015 Benthic SSB cruises to investigate the 4 main ‘representative’ sites in the Celtic Sea that will represent all the various sediment types found in the whole area, these being Mud, San, Sandy-Mud and Muddy-Sand. The cruise will also carry out complimentary sampling at the Pelagic SSB programme main site called CANDYFLOSS in the central Shelf area in order to better link the Benthic and Pelagic programmes.
Resumo:
Understanding long-term, ecosystem-level impacts of climate change is challenging because experimental research frequently focuses on short-term, individual-level impacts in isolation. We address this shortcoming first through an inter-disciplinary ensemble of novel experimental techniques to investigate the impacts of 14-month exposure to ocean acidification and warming (OAW) on the physiology, activity, predatory behaviour and susceptibility to predation of an important marine gastropod (Nucella lapillus). We simultaneously estimated the potential impacts of these global drivers on N. lapillus population dynamics and dispersal parameters. We then used these data to parameterise a dynamic bioclimatic envelope model, to investigate the consequences of OAW on the distribution of the species in the wider NE Atlantic region by 2100. The model accounts also for changes in the distribution of resources, suitable habitat and environment simulated by finely resolved biogeochemical models, under three IPCC global emissions scenarios. The experiments showed that temperature had the greatest impact on individual level responses, while acidification has a similarly important role in the mediation of predatory behaviour and susceptibility to predators. Changes in Nucella predatory behaviour appeared to serve as a strategy to mitigate individual level impacts of acidification, but the development of this response may be limited in the presence of predators. The model projected significant large-scale changes in the distribution of Nucella by the year 2100 that were exacerbated by rising greenhouse gas emissions. These changes were spatially heterogeneous, as the degree of impact of OAW on the combination of responses considered by the model varied depending on local environmental conditions and resource availability. Such changes in macro-scale distributions cannot be predicted by investigating individual level impacts in isolation, or by considering climate stressors separately. Scaling up the results of experimental climate change research requires approaches that account for long-term, multi-scale responses to multiple stressors, in an ecosystem context.
Resumo:
Broad-scale patterns in the distribution of deep-sea pelagic species and communities are poorly known. An important question is whether biogeographic boundaries identified from surface features are important in the deep mesopelagic and bathypelagic. We present community analyses of discrete-depth samples of mesozooplankton and micronekton to full-ocean depth collected in the area where the Mid-Atlantic Ridge is crossed by the Subpolar Front. The results show that the distributional discontinuity associated with the front, which is strong near the surface, decreases with increasing depth. Both the frontal separation near the surface and the community convergence at increasing depths were clearer for mesozooplankton than for micronekton.
Resumo:
Instrumental equipment unsuitable or unavailable for fieldwork as well as lack of ship space can necessitate the preservation of seawater samples prior to analysis in a shore-based laboratory. Mercuric chloride (HgCl2/ is routinely used for such preservation, but its handling and subsequent disposal incur environmental risks and significant expense. There is therefore a strong motivation to find less hazardous alternatives. Benzalkonium chloride (BAC) has been used previously as microbial inhibitor for freshwater samples. Here, we assess the use of BAC for marine samples prior to the measurement of oxygen-to-argon (O2 = Ar) ratios, as used for the determination of biological net community production. BAC at a concentration of 50 mg dm-3 inhibited microbial activity for at least 3 days in samples tested with chlorophyll a (Chl a) concentrations up to 1 mgm-3. BAC concentrations of 100 and 200 mg dm
Resumo:
The citation text is: Findlay H.S. (2015). Catlin Arctic Survey 2010 Environmental data. British Oceanographic Data Centre - Natural Environment Research Council, UK. doi:10/767.
Resumo:
The effects of ocean acidification (OA) on nitrous oxide (N2O) production and on the community composition of ammonium oxidizing archaea (AOA) were examined in the northern and southern sub-polar and polar Atlantic Ocean. Two research cruises were performed during June 2012 between the North Sea and Arctic Greenland and Barent Seas, and in January–February 2013 to the Antarctic Scotia Sea. Seven stations were occupied in all during which shipboard experimental manipulations of the carbonate chemistry were performed through additions of NaHCO3−+HCl in order to examine the impact of short-term (48 h for N2O and between 96 and 168 h for AOA) exposure to control and elevated conditions of OA. During each experiment, triplicate incubations were performed at ambient conditions and at 3 lowered levels of pH which varied between 0.06 and 0.4 units according to the total scale and which were targeted at CO2 partial pressures of ~500, 750 and 1000 µatm. The AOA assemblage in both Arctic and Antarctic regions was dominated by two major archetypes that represent the marine AOA clades most often detected in seawater. There were no significant changes in AOA assemblage composition between the beginning and end of the incubation experiments. N2O production was sensitive to decreasing pHT at all stations and decreased by between 2.4% and 44% with reduced pHT values of between 0.06 and 0.4. The reduction in N2O yield from nitrification was directly related to a decrease of between 28% and 67% in available NH3 as a result of the pH driven shift in the NH3:NH4+ equilibrium. The maximum reduction in N2O production at conditions projected for the end of the 21st century was estimated to be 0.82 Tg N y−1.