454 resultados para Ocean outfalls
Resumo:
Centropages typicus is a temperate neritic-coastal species of the North Atlantic Oceans, generally found between the latitudes of the Mediterranean and the Norwegian Sea. Therefore, the species experiences a large number of environments and adjusts its life cycle in response to changes in key abiotic parameters such as temperature. Using data from the Continuous Plankton Recorder (CPR) Survey, we review the macroecology of C. typicus and factors that influence its spatial distribution, phenology and year-to-year to decadal variability. The ecological preferences are identified and quantified. Mechanisms that allow the species to occur in such different environments are discussed and hypotheses are proposed as to how the species adapts to its environment. We show that temperature and both quantity and quality of phytoplankton are important factors explaining the space and time variability of C. typicus. These results show that C. typicus will not respond only to temperature increase in the region but also to changes in phytoplankton abundance, structure and composition and timing of occurrence. Methods such as a decision tree can help to forecast expected changes in the distribution of this species with hydro-climatic forcing. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Seabirds are effective samplers of the marine environment, and can be used to measure resource partitioning among species and sites via food loads destined for chicks. We examined the composition, overlap, and relationships to changing climate and oceanography of 3,216 food loads from Least, Crested, and Whiskered Auklets (Aethia pusilla, A. cristatella, A. pygmaea) breeding in Alaska during 1994–2006. Meals comprised calanoid copepods (Neocalanus spp.) and euphausiids (Thysanoessa spp.) that reflect secondary marine productivity, with no difference among Buldir, Kiska, and Kasatochi islands across 585 km of the Aleutian Islands. Meals were very similar among species (mean Least–Crested Auklet overlap C = 0.68; Least–Whiskered Auklet overlap C = 0.96) and among sites, indicating limited partitioning of prey resources for auklets feeding chicks. The biomass of copepods and euphausiids in Least and Crested Auklet food loads was related negatively to the summer (June–July–August) North Pacific Gyre Oscillation, while in Whiskered Auklet food loads, this was negatively related to the winter (December–January–February) Pacific Decadal Oscillation, both of which track basin-wide sea-surface temperature (SST) anomalies. We found a significant quadratic relationship between the biomass of calanoid copepods in Least Auklet food loads at all three study sites and summer (June–July) SST, with maximal copepod biomass between 3–6°C (r 2 = 0.71). Outside this temperature range, zooplankton becomes less available to auklets through delayed development. Overall, our results suggest that auklets are able to buffer climate-mediated bottom-up forcing of demographic parameters like productivity, as the composition of chick meals has remained constant over the course of our study.
Resumo:
The genus Oithona is considered the most ubiquitous and abundant copepod group in the world oceans. Although they generally make-up a lower proportion of the total copepod biomass, because of their high numerical abundance, preferential feeding for microzooplankton and motile preys, Oithona spp. plays an important role in microbial food webs and can provide a food source for other planktonic organisms. Thus, changes in Oithona spp. overall abundance and the timing of their annual maximum (i.e. phenology) can have important consequences for both energy flow within marine food webs and secondary production. Using the long term data (1954-2005) collected by the Continuous Plankton Recorder (CPR), the present study, investigates whether global climate warming my have affected the long term trends in Oithona spp. population abundance and phenology in relation to biotic and abiotic variables and over a wide latitudinal range and diverse oceanographic regions in the Atlantic, Pacific and Southern Ocean.
Resumo:
The European Project on Ocean Acidification (EPOCA) is Europe's first large-scale research initiative devoted to studying the impacts and consequences of ocean acidification. More than 100 scientists from 27 institutes and nine countries bring their expertise to the project, resulting in a multidisciplinary and versatile consortium. The project is funded for four years (2008 to 2012) by the European Commission within its Seventh Framework Programme. This article describes EPOCA and explains its different aspects, objectives, and products. Following a general introduction, six boxes highlight outcomes, techniques, and scientific results from each of the project's core themes.
Resumo:
Pronounced changes in fauna, extending from the English Channel in the south to the Barents Sea in the north-east and off Greenland in the north-west, have occurred in the late 1920s, the late 1960s and again in the late 1990s. We attribute these events to exchanges of subarctic and subtropical water masses in the north-eastern North Atlantic Ocean, associated with changes in the strength and extent of the subpolar gyre. These exchanges lead to variations in the influence exerted by the subarctic or Lusitanian biomes on the intermediate faunistic zone in the north-eastern Atlantic. This strong and persistent bottom-up bio-physical link is demonstrated using a numerical ocean general circulation model and data on four trophically connected levels in the food chain – phytoplankton, zooplankton, blue whiting, and pilot whales. The plankton data give a unique basin-scale depiction of these changes, and a long pilot whale record from the Faroe Islands offers an exceptional temporal perspective over three centuries. Recent advances in simulating the dynamics of the subpolar gyre suggests a potential for predicting the distribution of the main faunistic zones in the north-eastern Atlantic a few years into the future, which might facilitate a more rational management of the commercially important fisheries in this region.
Resumo:
Copepods represent the major part of the dry weight of the mesozooplankton in pelagic ecosystems and therefore have a central role in the secondary production of the North Atlantic Ocean. The calanoid copepod species Calanus finmarchicus is the main large copepod in subarctic waters of the North Atlantic, dominating the dry weight of the mesozooplankton in regions such as the northern North Sea and the Norwegian Sea. The objective of this work was to investigate the relationships between both the fundamental and realised niches of C. finmarchicus in order to better understand the future influence of global climate change on the abundance, the spatial distribution and the phenology of this key-structural species. Based on standardised Principal Component Analyses (PCAs), a macroecological approach was applied to determine factors affecting the spatial distribution of C. finmarchicus and to characterise its realised niche. Second, an ecophysiological model was used to calculate the Potential Egg Production Rate (PEPR) of C. finmarchicus and the centre of its fundamental niche. Relationships between the two niches were then investigated by correlation analysis. We found a close relationship between the fundamental and realised niches of C. finmarchicus at spatial, monthly and decadal scales. While the species is at the centre of its niche in the subarctic gyre, our joint macroecological and macrophysiological analyses show that it is at the edge of its niche in the North Sea, making the species in this region more vulnerable to temperature changes.
Resumo:
Assessing the skill of biogeochemical models to hindcast past variability is challenging, yet vital in order to assess their ability to predict biogeochemical change. However, the validation of decadal variability is limited by the sparsity of consistent, long-term biological datasets. The Phytoplankton Colour Index (PCI) product from the Continuous Plankton Recorder survey, which has been sampling the North Atlantic since 1948, is an example of such a dataset. Converting the PCI to chlorophyll values using SeaWiFS data allows a direct comparison with model output. Here we validate decadal variability in chlorophyll from the GFDL TOPAZ model. The model demonstrates skill at reproducing interannual variability, but cannot simulate the regime shifts evident in the PCI data. Comparison of the model output, data and climate indices highlights under-represented processes that it may be necessary to include in future biogeochemical models in order to accurately simulate decadal variability in ocean ecosystems.
Resumo:
We examined the taxonomic resolution of zooplankton data required to identify ocean basin scale biogeographic zonation in the Southern Ocean. A 2,154 km transect was completed south of Australia. Sea surface temperature (SST) measured at 1 min intervals showed that seven physical zones were sampled. Zooplankton were collected at a spatial resolution of similar to 9.2 km with a continuous plankton recorder, identified to the highest possible taxonomic resolution and enumerated. Zooplankton assemblage similarity between samples was calculated using the Bray-Curtis index for the taxonomic levels of species, genus, family, order and class after first log(10)(x + 1) (LA) and then presence/absence (PA) transformation of abundance data. Although within and between zone sample similarity increased with decreasing taxonomic resolution, for both data transformations, cluster analysis demonstrated that the biogeographic separation of zones remained at all taxonomic levels when using LA data. ANOSIM confirmed this, detecting significant differences in zooplankton assemblage structure between all seven a priori determined physical zones for all taxonomic levels when using the LA data. In the case of the PA data for the complete data set, and both LA and PA data for a crustacean only data set, no significant differences were detected between zooplankton assemblages in the Polar frontal zone (PFZ) and inter-PFZ at any taxonomic level. Loss of information at resolutions below the species level, particularly in the PA data, prevented the separation of some zones. However, the majority of physical zones were biogeographically distinct from species level to class using both LA and PA transformations. Significant relationships between SST and zooplankton community structure, summarised as NMDS scores, at all taxonomic levels, for both LA and PA transformations, and complete and crustacean only data sets, highlighted the biogeographic relevance of low resolution taxonomic data. The retention of biogeographic information in low taxonomic resolution data shows that data sets collected with different taxonomic resolutions may be meaningfully merged for the post hoc generation of Southern Ocean time series.
Resumo:
Mid-ocean ridges are common features of the world’s oceans but there is a lack of understanding as to how their presence affects overlying pelagic biota. The Mid-Atlantic Ridge (MAR) is a dominant feature of the Atlantic Ocean. Here, we examined data on euphausiid distribution and abundance arising from several international research programmes and from the continuous plankton recorder. We used a generalized additive model (GAM) framework to explore spatial patterns of variability in euphausiid distribution on, and at either side of, the MAR from 60°N to 55°S in conjunction with variability in a suite of biological, physical and environmental parameters. Euphausiid species abundance peaked in mid-latitudes and was significantly higher on the ridge than in adjacent waters, but the ridge did not influence numerical abundance significantly. Sea surface temperature (SST) was the most important single factor influencing both euphausiid numerical abundance and species abundance. Increases in sea surface height variance, a proxy for mixing, increased the numerical abundance of euphausiids. GAM predictions of variability in species abundance as a function of SST and depth of the mixed layer were consistent with present theories, which suggest that pelagic niche availability is related to the thermal structure of the near surface water: more deeply-mixed water contained higher euphausiid biodiversity. In addition to exposing present distributional patterns, the GAM framework enables responses to potential future and past environmental variability including temperature change to be explored.
Resumo:
Decapoda taken in Continuous Plankton Recorder (CPR) samples from the Pacific in 1997 and 2000-2003 have been identified and measured. Some previously un-described larval stages were referred to species and characteristics of these are described. Distributions and seasonal occurrence of decapod taxa in the samples are described and discussed with particular emphasis on the dendrobranchiate shrimp Sergestes similis and the brachyurans Cancer spp. And Chionoecetes spp. There is a prolonged larval season at low levels of abundance off the Californian coast but in the more northern waters there is a shorter productive period but numbers of larvae per sample are high, particularly in June. Larvae of Chionoecetes and other Oregoninae were found only from May to July.
Resumo:
The consequences for pelagic communities of warming trends in mid and high latitude ocean regions could be substantial, but their magnitude and trajectory are not yet known. Environmental changes predicted by climate models (and beginning to be confirmed by observations) include warming and freshening of the upper ocean and reduction in the extent and duration of ice cover. One way to evaluate response scenarios is by comparing how "similar" zooplankton communities have differed among years and/or locations with differing temperature. The subarctic Pacific is a strong candidate for such comparisons, because the same mix of zooplankton species dominates over a wide range of temperature climatologies, and observations have spanned substantial temperature variability at interannual-to-decadal time scales. In this paper, we review and extend copepod abundance and phenology time series from net tow and Continuous Plankton Recorder surveys in the subarctic Northeast Pacific. The two strongest responses we have observed are latitudinal shifts in centers of abundance of many species (poleward under warm conditions), and changes in the life cycle timing of Neocalanus plumchrus in both oceanic and coastal regions (earlier by several weeks in warm years and at warmer locations). These zooplankton data, plus indices of higher trophic level responses such as reproduction, growth and survival of pelagic fish and seabirds, are all moderately-to-strongly intercorrelated (vertical bar r vertical bar = 0.25-0.8) with indices of local and basin-scale temperature anomalies. A principal components analysis of the normalized anomaly time series from 1979 to 2004 shows that a single "warm-and-low-productivity" vs. "cool-and-high-productivity" component axis accounts for over half of the variance/covariance. Prior to 1990, the scores for this component were negative ("cool" and "productive") or near zero except positive in the El Nino years 1983 and 1987. The scores were strongly and increasingly positive ("warm" and "low productivity") from 1992 to 1998; negative from 1999 to 2002; and again increasingly positive from 2003-present. We suggest that, in strongly seasonal environments, anomalously high temperature may provide misleading environmental cues that contribute to timing mismatch between life history events and the more-nearly-fixed seasonality of insolation, stratification, and food supply. Crown Copyright (c) 2007 Published by Elsevier Ltd. All rights reserved.
Resumo:
Acantharian cysts were discovered in sediment trap samples from spring 2007 at 2000 m in the Iceland Basin. Although these single-celled organisms contribute to particulate organic matter flux in the upper mesopelagic, their contribution to bathypelagic particle flux has previously been found negligible. Four time-series sediment traps were deployed and all collected acantharian cysts, which are reproductive structures. Across all traps, cysts contributed on average 3-22%, and 4―24% of particulate organic carbon and nitrogen (POC and PON) flux, respectively, during three separate collection intervals (the maximum contribution in any one trap was 48% for POC and 59% for PON). Strontium (Sr) flux during these 6 weeks reached 3 mg m―2 d―1. The acantharian celestite (SrSO4) skeleton clearly does not always dissolve in the mesopelagic as often thought, and their cysts can contribute significantly to particle flux at bathypelagic depths during specific flux events. Their large size (∼ I mm) and mineral ballast result in a sinking rate of ∼ 500 m d―1; hence, they reach the bathypelagic before dissolving. Our findings are consistent with a vertical profile of salinity-normalized Sr concentration in the Iceland Basin, which shows a maximum at 1700 m. Profiles of salinity-normalized Sr concentration in the subarctic Pacific reach maxima at ≤ 1500 m, suggesting that Acantharia might contribute to the bathypelagic particle flux there as well. We hypothesize that Acantharia at high latitudes use rapid, deep sedimentation of reproductive cysts during phytoplankton blooms so that juveniles can exploit the large quantity of organic matter that sinks rapidly to the deep sea following a bloom.
Resumo:
35S-Methionine and 3H-leucine bioassay tracer experiments were conducted on two meridional transatlantic cruises to assess whether dominant planktonic microorganisms use visible sunlight to enhance uptake of these organic molecules at ambient concentrations. The two numerically dominant groups of oceanic bacterioplankton were Prochlorococcus cyanobacteria and bacteria with low nucleic acid (LNA) content, comprising 60% SAR11-related cells. The results of flow cytometric sorting of labelled bacterioplankton cells showed that when incubated in the light, Prochlorococcus and LNA bacteria increased their uptake of amino acids on average by 50% and 23%, respectively, compared with those incubated in the dark. Amino acid uptake of Synechococcus cyanobacteria was also enhanced by visible light, but bacteria with high nucleic acid content showed no light stimulation. Additionally, differential uptake of the two amino acids by the Prochlorococcus and LNA cells was observed. The populations of these two types of cells on average completely accounted for the determined 22% light enhancement of amino acid uptake by the total bacterioplankton community, suggesting a plausible way of harnessing light energy for selectively transporting scarce nutrients that could explain the numerical dominance of these groups in situ.
Resumo:
Changes in phytoplankton dynamics influence marine biogeochemical cycles, climate processes, and food webs, with substantial social and economic consequences. Large-scale estimation of phytoplankton biomass was possible via ocean colour measurements from two remote sensing satellites – the Coastal Zone Color Scanner (CZCS, 1979-1986) and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS, 1998-2010). Due to the large gap between the two satellite eras and differences in sensor characteristics, comparison of the absolute values retrieved from the two instruments remains challenging. Using a unique in situ ocean colour dataset that spans more than half a century, the two satellite-derived chlorophyll-a (Chl-a) eras are linked to assess concurrent changes in phytoplankton variability and bloom timing over the Northeast Atlantic Ocean and North Sea. Results from this unique re-analysis reflect a clear increasing pattern of Chl-a, a merging of the two seasonal phytoplankton blooms producing a longer growing season and higher seasonal biomass, since the mid-1980s. The broader climate plays a key role in Chl-a variability as the ocean colour anomalies parallel the oscillations of the Northern Hemisphere Temperature (NHT) since 1948.