17 resultados para water-in-oil emulsion


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies have shown that the bioturbating polychaete Hediste (Nereis) diversicolor can affect the composition of bacterial communities in oil-contaminated sediments, but have not considered diversity specifically within bioturbator burrows or the impact on microbial eukaryotes. We tested the hypothesis that H. diversicolor burrows harbour different eukaryotic and bacterial communities compared with un-bioturbated sediment, and that bioturbation stimulates oil degradation. Oil-contaminated sediment was incubated with or without H. diversicolor for 30 days, after which sediment un-affected by H. diversicolor and burrow DNA/RNA samples were analysed using quantitative reverse transcription PCR (Q-RT-PCR) and high-throughput sequencing. Fungi dominated both burrow and un-bioturbated sediment sequence libraries; however, there was significant enrichment of bacterivorous protists and nematodes in the burrows. There were also significant differences between the bacterial communities in burrows compared with un-bioturbated sediment. Increased activity and relative abundance of aerobic hydrocarbon-degrading bacteria in the burrows coincided with the significant reduction in hydrocarbon concentration in the bioturbated sediment. This study represents the first detailed assessment of the effect of bioturbation on total microbial communities in oil-contaminated sediments. In addition, it further shows that bioturbation is a significant factor in determining microbial diversity within polluted sediments and plays an important role in stimulating bioremediation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemoreception is a key activity by which many aquatic animals perceive their environment, and therefore abiotic disruptions to this process could have serious impacts on the survival and fitness of individuals, and on species interactions. Hermit crabs are subject to cyclical reductions in the pH of the water in the intertidal rock pools that they inhabit. Such reductions may be further exacerbated by ongoing ocean acidification and/or leakage of carbon dioxide from geological storage sites and coastal upwelling events. Here we test the chemo-sensory responses of the hermit crab Pagurus bernhardus (Linnaeus) to a food odour under reduced pH conditions (pHNBS = 6.80). Acidifying the odour had no effect on its attractiveness indicating no permanent degradation of the cue; however, the pH of the sea water did affect the crabs' responses. Hermit crabs kept and tested in reduced pH sea water had lower antennular flicking rates (the ‘sniffing’ response in decapods); were less successful in locating the odour source, and showed an overall decline in locomotory activity compared to those in untreated sea water. Analysis of their haemolymph revealed a greater concentration of chloride ions ([Cl−]) in the reduced pH treatment group, suggesting iono-regulatory disruption; however, there was no correlation between [Cl−] and locomotory activity, suggesting a specific effect on chemoreception. This study shows that the chemo-responsiveness of a crustacean may be influenced by both naturally occurring pH fluctuations and future anthropogenically-induced changes in ocean pH.