36 resultados para summer residence
Mesoscale distribution of dominant bacterioplankton groups in the northern North Sea in early summer
Resumo:
The composition and distribution of phytoplankton assemblages around the tip of the Antarctic Peninsula were studied during two summer cruises (February/March 2008 and 2009). Water samples were collected for HPLC/CHEMTAX pigment and microscopic analysis. A great spatial variability in chlorophyll a (Chl a) was observed in the study area: highest levels in the vicinity of the James Ross Island (exceeding 7 mg m−3 in 2009), intermediate values (0.5 to 2 mg m−3) in the Bransfield Strait, and low concentrations in the Weddell Sea and Drake Passage (below 0.5 mg m−3). Phytoplankton assemblages were generally dominated by diatoms, especially at coastal stations with high Chl a concentration, where diatom contribution was above 90% of total Chl a. Nanoflagellates, such as cryptophytes and/or Phaeocystis antarctica, replaced diatoms in open-ocean areas (e.g., Weddell Sea). Many species of peridinin-lacking autotrophic dinoflagellates (e.g., Gymnodinium spp.) were also important to total Chl a biomass at well-stratified stations of Bransfield Strait. Generally, water column structure was the most important environmental factor determining phytoplankton communities’ biomass and distribution. The HPLC pigment data also allowed the assessment of different physiological responses of phytoplankton to ambient light variation. The present study provides new insights about the dynamics of phytoplankton in an undersampled region of the Southern Ocean highly susceptible to global climate change.
Resumo:
In the Sargasso Sea, maximum dimethylsulfide (DMS) accumulation occurs in summer, concomitant with the minimum of chlorophyll and 2 months later than its precursor, dimethylsulfoniopropionate (DMSP). This phenomenon is often referred to as the DMS "summer paradox". It has been previously suggested that the main agent triggering this pattern is increasing irradiance leading to light stress-induced DMS release from phytoplankton cells. We have developed a new model describing DMS(P) dynamics in the water column and used it to investigate how and to what extent processes other than light induced DMS exudation from phytoplankton, may contribute to the DMS summer paradox. To do this, we have conceptually divided the DMS "summer paradox" into two components: (1) the temporal decoupling between chlorophyll and DMSP and (2) the temporal decoupling between DMSP and DMS. Our results suggest that it is possible to explain the above cited patterns by means of two different dynamics, respectively: (1) a succession of phytoplankton types in the surface water and (2) the bacterially mediated DMSP(d) to DMS conversion, seasonally varying as a function of nutrient limitation. This work differs from previous modelling studies in that the presented model suggests that phytoplankton light-stress induced processes may only partially explain the summer paradox, not being able to explain the decoupling between DMSP and DMS, which is possibly the more challenging aspect of this phenomenon. Our study, therefore, provides an "alternative" explanation to the summer paradox further underlining the major role that bacteria potentially play in DMS production and fate.