31 resultados para predatory fishing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current climate change and overfishing are affecting the productivity and structure of marine ecosystems. This situation is unprecedented for the marine biosphere and it is essential to understand the mechanisms and pathways by which ecosystems respond. We report that climate change and overfishing are likely to be responsible for a rapid restructuring of a highly productive marine ecosystem with effects throughout the pelagos and the benthos. In the mid-1980s, climate change, consequent modifications in the North Sea plankton, and fishing, all reduced North Sea cod recruitment. In this region, production of many benthic species respond positively and immediately to temperature. Analysis of a long-term, spatially extensive biological (plankton and cod) and physical (sea surface temperature) dataset suggests that synchronous changes in cod numbers and sea temperature have established an extensive trophic cascade favoring lower trophic level groups over economic fisheries. A proliferation of jellyfish that we detect may signal the climax of these changes. This modified North Sea ecology may provide a clear indication of the synergistic consequences of coincident climate change and overfishing. The extent of the ecosystem restructuring that has occurred in the North Sea suggests we are unlikely to reverse current climate and human-induced effects through ecosystem resource management in the short term. Rather, we should understand and adapt to new ecological regimes. This implies that fisheries management policies will have to be fully integrated with the ecological consequences of climate change to prevent a similar collapse in an exploited marine ecosystem elsewhere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the early part of the 20th Century the impact of a range of anthropogenic activities in our coastal seas has steadily increased. The effect of such activities is a major cause for concern but in the benthic environment few studies exist that date back more than a few decades. Hence understanding long term changes is a challenge. Within this study we utilized a historic benthic dataset and resurveyed an area west of Eddystone reef in the English Channel previously investigated 112 years ago. The aim of the present work was to describe the current benthic community structure and investigate potential differences between 1895 and 2007. For each of the four major phyla investigated (Polychaeta, Crustacea, Mollusca and Echinodermata), multivariate community analysis showed significant differences between the historic and contemporary surveys. Echinoderm diversity showed a clear reduction between 1895 and 2007. The sea urchins Echinus esculentus, Spatangus purpureus, and Psammechinus miliaris and large star-fish Marthasterias glacialis showed reductions in abundance, in some cases being entirely absent from the survey area in 2007. Polychaetes showed a shift from tubiculous species to small errant and predatory species such as Glycera, Nephtys, and Lumbrineris spp. Within the group Mollusca large species such as Pecten maximus and Laevicardium crassum decreased in abundance while small species increased. Crustaceans in 1895 were dominated by crab species which were present in similar abundances in 2007, but, the order Amphipoda appeared to show a significant increase. While some of the differences observed could stem from differences in methodologies between the surveys, in particular increases of small cryptic species, the loss of large conspicuous species was judged to be genuine. The study area is an important beam trawling and scallop dredging ground; the differences observed are concomitant with changes generally associated with disturbance from demersal fishing activities such as these.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interest in animal personalities has generated a burgeoning literature on repeatability in individual traits such as boldness or exploration through time or across different contexts. Yet, repeatability can be influenced by the interactive social strategies of individuals, for example, consistent inter-individual variation in aggression is well documented. Previous work has largely focused on the social aspects of repeatability in animal behaviour by testing individuals in dyadic pairings. Under natural conditions, individuals interact in a heterogeneous polyadic network. However, the extent to which there is repeatability of social traits at this higher order network level remains unknown. Here, we provide the first empirical evidence of consistent and repeatable animal social networks. Using a model species of shark, a taxonomic group in which repeatability in behaviour has yet to be described, we repeatedly quantified the social networks of ten independent shark groups across different habitats, testing repeatability in individual network position under changing environments. To understand better the mechanisms behind repeatable social behaviour, we also explored the coupling between individual preferences for specific group sizes and social network position. We quantify repeatability in sharks by demonstrating that despite changes in aggregation measured at the group level, the social network position of individuals is consistent across treatments. Group size preferences were found to influence the social network position of individuals in small groups but less so for larger groups suggesting network structure, and thus, repeatability was driven by social preference over aggregation tendency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Overfishing is arguably the greatest ecological threat facing the oceans, yet catches of many highly migratory fishes including oceanic sharks remain largely unregulated with poor monitoring and data reporting. Oceanic shark conservation is hampered by basic knowledge gaps about where sharks aggregate across population ranges and precisely where they overlap with fishers. Using satellite tracking data from six shark species across the North Atlantic, we show that pelagic sharks occupy predictable habitat ‘hotspots’ of high space use. Movement modelling showed sharks preferred habitats characterised by strong sea-surface-temperature gradients (fronts) over other available habitats. However, simultaneous Global Positioning System (GPS) tracking of the entire Spanish and Portuguese longline-vessel fishing fleets show an 80% overlap of fished areas with hotspots, potentially increasing shark susceptibility to fishing exploitation. Regions of high overlap between oceanic tagged sharks and longliners included the North Atlantic Current/Labrador Current convergence zone and the Mid-Atlantic Ridge south-west of the Azores. In these main regions, and sub-areas within them, shark/vessel co-occurrence was spatially and temporally persistent between years, highlighting how broadly the fishing exploitation efficiently ‘tracks’ oceanic sharks within their space-use hotspots year-round. Given this intense focus of longliners on shark hotspots our study argues the need for international catch limits for pelagic sharks and identifies a future role of combining fine-scale fish and vessel telemetry to inform the ocean-scale management of fisheries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1.Methods of sensitivity assessment to identify species and habitats in need of management or protection have been available since the 1970s. 2.The approach to sensitivity assessment adopted by the Marine Life Information Network (MarLIN) assumes that the sensitivity of a community or biotope is dependent on the species within it. However, the application of this approach to sedimentary communities, especially offshore, is complex because of a lack of knowledge of the structural or functional role of many sedimentary species. 3.This paper describes a method to assess the overall sensitivity of sedimentary communities, based on the intolerance and recoverability of component species to physical disturbance. A range of methods were applied to identify the best combinations of abundant, dominant or high biomass species for the assessment of sensitivity in the sedimentary communities examined. 4.Results showed that reporting the most frequent species' sensitivity assessment, irrespective of the four methods used to select species, consistently underestimated the total sensitivity of the community. In contrast, reporting the most sensitive assessment from those species selected resulted in a range of biotope sensitivities from very low to very high, that was better able to discriminate between the sensitivities of the communities examined. 5.The assumptions behind the methodology, its limitations and potential application are discussed.