19 resultados para clone differences
Resumo:
Two key players in the Arctic and subarctic marine ecosystem are the calanoid copepods, Calanus finmarchicus and C. glacialis. Although morphologically very similar, these sibling species have different life cycles and roles in the Arctic pelagic marine ecosystem. Considering that the distribution of C. glacialis corresponds to Arctic water masses and C. finmarchicus to Atlantic water masses, the species are frequently used as climate indicators. Consequently, correct identification of the two species is essential if we want to understand climate-impacted changes on Calanus-dominated marine ecosystems such as the Arctic. Here, we present a novel morphological character (redness) to distinguish live females of C. glacialis and C. finmarchicus and compare it to morphological (prosome length) and genetic identification. The characters are tested on 300 live females of C. glacialis and C. finmarchicus from Disko Bay, western Greenland. Our analysis confirms that length cannot be used as a stand-alone criterion for separation. The results based on the new morphological character were verified genetically using a single mitochondrial marker (16S) and nuclear loci (six microsatellites and 12 InDels). The pigmentation criterion was also used on individuals (n = 89) from Young Sound fjord, northeast Greenland to determine whether the technique was viable in different geographical locations. Genetic markers based on mitochondrial and nuclear loci were corroborative in their identification of individuals and revealed no hybrids. Molecular identification confirmed that live females of the two species from Greenlandic waters, both East and West, can easily be separated by the red pigmentation of the antenna and somites of C. glacialis in contrast to the pale opaque antenna and somites of C. finmarchicus, confirming that the pigmentation criterion is valid for separation of the two species
Disturbance to conserved bacterial communities in the cold water gorgonian coral Eunicella verrucosa
Resumo:
The bacterial communities associated with healthy and diseased colonies of the cold-water gorgonian coral Eunicella verrucosa at three sites off the south-west coast of England were compared using denaturing gradient gel electrophoresis (DGGE) and clone libraries. Significant differences in community structure between healthy and diseased samples were discovered, as were differences in the level of disturbance to these communities at each site; this correlated with depth and sediment load. The majority of cloned sequences from healthy coral tissue affiliated with the Gammaproteobacteria. The stability of the bacterial community and dominance of specific genera found across visibly healthy colonies suggest the presence of a specific microbial community. Affiliations included a high proportion of Endozoicomonas sequences, which were most similar to sequences found in tropical corals. This genus has been found in a number of invertebrates and is suggested to have a role in coral health and in the metabolisation of dimethylsulfoniopropionate (DMSP) produced by zooxanthellae. However, screening of colonies for the presence of zooxanthellae produced a negative result. Diseased colonies showed a decrease in affiliated clones and an increase in clones related to potentially harmful/transient microorganisms but no increase in a particular pathogen. This study demonstrates that a better understanding of these bacterial communities, the factors that affect them and their role in coral health and disease will be of critical importance in predicting future threats to temperate gorgonian communities.