26 resultados para avian physiology
Resumo:
Although many studies have debated the theoretical links between physiology, ecological niches and species distribution, few studies have provided evidence for a tight empirical coupling between these concepts at a macroecological scale. We used an ecophysiological model to assess the fundamental niche of a key-structural marine species. We found a close relationship between its fundamental and realized niche. The relationship remains constant at both biogeographical and decadal scales, showing that changes in environmental forcing propagate from the physiological to the macroecological level. A substantial shift in the spatial distribution is detected in the North Atlantic and projections of range shift using IPCC scenarios suggest a poleward movement of the species of one degree of latitude per decade for the 21st century. The shift in the spatial distribution of this species reveals a pronounced alteration of polar pelagic ecosystems with likely implications for lower and upper trophic levels and some biogeochemical cycles.
Resumo:
We present an extensive dataset of dimethylsulphide (DMS, n = 651) and dimethylsulphoniopropionate (DMSP, n = 590) from the Atlantic Meridional Transect programme. These data are used to derive representative depth profiles that illustrate observed natural variations and can be used for DMS and DMSP model-validation in oligotrophic waters. To further understand our dataset, we interpret the data with a wide range of accompanying parameters that characterise the prevailing biogeochemical conditions and phytoplankton community physiology, activity, taxonomic composition, and capacity to cope with light stress. No correlations were observed with typical biomarker pigments for DMSP-producing species. However, strong correlations were found between DMSP and primary production by cells >2 µm in diameter, and between DMSP and some photo-protective pigments. These parameters are measures of mixed phytoplankton communities, so we infer that such associations are likely to be stronger in DMSP-producing organisms. Further work is warranted to develop links between community parameters, DMS and DMSP at the global scale.
Resumo:
Phytoplankton photosynthesis links global ocean biology and climate-driven fluctuations in the physical environment. These interactions are largely expressed through changes in phytoplankton physiology, but physiological status has proven extremely challenging to characterize globally. Phytoplankton fluorescence does provide a rich source of physiological information long exploited in laboratory and field studies, and is now observed from space. Here we evaluate the physiological underpinnings of global variations in satellite-based phytoplankton chlorophyll fluorescence. The three dominant factors influencing fluorescence distributions are chlorophyll concentration, pigment packaging effects on light absorption, and light-dependent energy-quenching processes. After accounting for these three factors, resultant global distributions of quenching-corrected fluorescence quantum yields reveal a striking consistency with anticipated patterns of iron availability. High fluorescence quantum yields are typically found in low iron waters, while low quantum yields dominate regions where other environmental factors are most limiting to phytoplankton growth. Specific properties of photosynthetic membranes are discussed that provide a mechanistic view linking iron stress to satellite-detected fluorescence. Our results present satellite-based fluorescence as a valuable tool for evaluating nutrient stress predictions in ocean ecosystem models and give the first synoptic observational evidence that iron plays an important role in seasonal phytoplankton dynamics of the Indian Ocean. Satellite fluorescence may also provide a path for monitoring climate-phytoplankton physiology interactions and improving descriptions of phytoplankton light use efficiencies in ocean productivity models.
Resumo:
A widespread and complex distribution of vitamin requirements exists over the entire tree of life, with many species having evolved vitamin dependence, both within and between different lineages. Vitamin availability has been proposed to drive selection for vitamin dependence, in a process that links an organism's metabolism to the environment, but this has never been demonstrated directly. Moreover, understanding the physiological processes and evolutionary dynamics that influence metabolic demand for these important micronutrients has significant implications in terms of nutrient acquisition and, in microbial organisms, can affect community composition and metabolic exchange between coexisting species. Here we investigate the origins of vitamin dependence, using an experimental evolution approach with the vitamin B(12)-independent model green alga Chlamydomonas reinhardtii. In fewer than 500 generations of growth in the presence of vitamin B(12), we observe the evolution of a B(12)-dependent clone that rapidly displaces its ancestor. Genetic characterization of this line reveals a type-II Gulliver-related transposable element integrated into the B(12)-independent methionine synthase gene (METE), knocking out gene function and fundamentally altering the physiology of the alga.
Resumo:
Lipids are key constituents of marine phytoplankton, and some fatty acids (key constituents of lipids) are essential dietary components for secondary producers. However, in natural marine ecosystems the interactions of factors affecting seasonal phytoplankton lipid composition are still poorly understood. The aim of this study was to assess the roles of seasonal succession in phytoplankton community composition and nutrient concentrations, on the lipid composition of the phytoplankton community. Fatty acid and polar lipid composition in seston was measured in surface waters at the time series station L4, an inshore station in the Western English Channel, from January to December 2013. Redundancy analyses (RDA) were used to identify factors (abiotic and biotic) that explained the seasonal variability in phytoplankton lipids. RDA demonstrated that nutrients (namely nitrogen) explained the majority of variation in phytoplankton lipid composition, as well as a smaller explanatory contribution from changes in phytoplankton community composition. The physiological adaptations of the phytoplankton community to nutrient deplete conditions during the summer season when the water column was stratified, was further supported by changes in the polar lipid to phytoplankton biomass ratios (also modelled with RDA) and increases in the lipid to chlorophyll a ratios, which are both indicative of nutrient stress. However, the association of key fatty acid markers with phytoplankton groups e.g. 22:6 n-3 and dinoflagellate biomass (predominant in summer), meant there were no clear seasonal differences in the overall degree of fatty acid saturation, as might have been expected from typical nutrient stress on phytoplankton. Based on the use of polyunsaturated fatty acids (PUFA) as markers of ‘food quality’ for grazers, our results suggest that in this environment high food quality is maintained throughout summer, due to seasonal succession towards flagellated phytoplankton species able to maintain PUFA synthesis under surface layer nutrient depletion.