30 resultados para Tomato severe rugose virus


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean acidification, caused by increasing atmospheric concentrations of CO2 (refs 1-3), is one of the most critical anthropogenic threats to marine life. Changes in seawater carbonate chemistry have the potential to disturb calcification, acid-base regulation, blood circulation and respiration, as well as the nervous system of marine organisms, leading to long-term effects such as reduced growth rates and reproduction(4,5). In teleost fishes, early life-history stages are particularly vulnerable as they lack specialized internal pH regulatory mechanisms(6,7). So far, impacts of relevant CO2 concentrations on larval fish have been found in behaviour(8,9) and otolith size(10,11), mainly in tropical, non-commercial species. Here we show detrimental effects of ocean acidification on the development of a mass-spawning fish species of high. commercial importance. We reared Atlantic cod larvae at three levels of CO2, (1) present day, (2) end of next century and (3) an extreme, coastal upwelling scenario, in a long-term (2; months) mesocosm experiment. Exposure to CO2 resulted in severe to lethal tissue damage in many internal organs, with the degree of damage increasing with CO2 concentration. As larval survival is the bottleneck to recruitment, ocean acidification has the potential to act as an additional source of natural mortality, affecting populations of already exploited fish stocks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During viral infection of Emiliania huxleyi, laboratory studies have shown that photo-system (PS) II efficiency declines during the days post-infection and is thought to be associated with viral-induced interruption of electron transport rates between photosystems. However,measuring the impact of viral infection on PSII function in E. huxleyi populations from natural,taxonomically diverse phytoplankton communities is difficult, and whether this phenomenon occurs in nature is presently unknown. Here, chlorophyll fluorescence analysis was used to assess changes in PSII efficiency throughout an E. huxleyi bloom during a mesocosm experiment off the coast of Norway. Specifically, we aimed to determine whether a measurable suppression of the efficiency of PSII photochemistry could be observed due to viral infection of the natural E. huxleyi populations. During the major infection period prior to bloom collapse, there was a significant reduction in PSII efficiency with an average decrease in maximum PSII photochemical efficiency (Fv/Fm) of 17% and a corresponding 75% increase in maximum PSII effective absorption cross section(σPSII); this was concurrent with a significant decrease in E. huxleyi growth rates and an increase in E. huxleyi virus (EhV) production. As E. huxleyi populations dominated the phytoplankton community and potentially contributed up to 100% of the chlorophyll a pool, we believe that the variable chlorophyll fluorescence signal measured during this period was derived predominantly from E. huxleyi and, thus, reflects changes occurring within E. huxleyi cells. This is the first demonstration of suppression of PSII photochemistry occurring during viral infection of natural coccolithophore populations.