18 resultados para Thiamin, Methanimine, Cyanoacetylene, Acetonitrile, Allylene, Acetylene, Ammonia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The abundance of ammonia-oxidising bacterial (AOB) and ammonia-oxidising archaeal (AOA) (amoA) genes and ammonia oxidation rates were compared bimonthly from July 2008 to May 2011 in 4 contrasting coastal sediments in the western English Channel. Despite a higher abundance of AOA amoA genes within all sediments and at all time-points, rates of ammonia oxidation correlated with AOB and not AOA amoA gene abundance. Sediment type was a major factor in determining both AOB amoA gene abundance and AOB community structure, possibly due to deeper oxygen penetration into the sandier sediments, increasing the area available for ammonia oxidation. Decreases in AOB amoA gene abundance were evident during summer and autumn, with maximum abundance and ammonia oxidation rates occurring in winter and early spring. PCR-DGGE of AOB amoA genes indicated that no seasonal changes to community composition occurred; however, a gradual movement in community composition occurred at 3 of the sites studied. The lack of correlation between AOA amoA gene abundance and ammonium oxidation rates, or any other environmental variable measured, may be related to the higher spatial variation amongst measurements, obscuring temporal trends, or the bimonthly sampling, which may have been too infrequent to capture temporal variability in the deposition of fresh organic matter. Alternatively, AOA may respond to changing substrate concentrations by an increase or decrease in transcript rather than gene abundance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of a sub-seabed CO2 leak from geological sequestration on the microbial process of ammonia oxidation was investigated in the field. Sediment samples were taken before, during and after a controlled sub-seabed CO2 leak at four zones differing in proximity to the CO2 source (epicentre, and 25m, 75m, and 450m distant). The impact of CO2 release on benthic microbial ATP levels was compared to ammonia oxidation rates and the abundance of bacterial and archaeal ammonia amoA genes and transcripts, and also to the abundance of nitrite oxidize (nirS) and anammox hydrazine oxidoreductase (hzo) genes and transcripts. The major factor influencing measurements was seasonal: only minor differences were detected at the zones impacted by CO2 (epicentre and 25m distant). This included a small increase to ammonia oxidation after 37daysof CO2 release which was linked to an increase in ammonia availability as a result of mineral dissolution. A CO2 leak on the scale used within this study (<1tonneday−1) would have very little impact to ammonia oxidation within coastal sediments. However, seawater containing 5% CO2 did reduce rates of ammonia oxidation. This was linked to the buffering capacity of the sediment, suggesting that the impact of a sub-seabed leak of stored CO2 on ammonia oxidation would be dependent on both the scale of the CO2 release and sediment type.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current global inventories of ammonia emissions identify the ocean as the largest natural source. This source depends on seawater pH, temperature, and the concentration of total seawater ammonia (NHx(sw)), which reflects a balance between remineralization of organic matter, uptake by plankton, and nitrification. Here we compare [NHx(sw)] from two global ocean biogeochemical models (BEC and COBALT) against extensive ocean observations. Simulated [NHx(sw)] are generally biased high. Improved simulation can be achieved in COBALT by increasing the plankton affinity for NHx within observed ranges. The resulting global ocean emissions is 2.5 TgN a−1, much lower than current literature values (7–23 TgN a−1), including the widely used Global Emissions InitiAtive (GEIA) inventory (8 TgN a−1). Such a weak ocean source implies that continental sources contribute more than half of atmospheric NHx over most of the ocean in the Northern Hemisphere. Ammonia emitted from oceanic sources is insufficient to neutralize sulfate aerosol acidity, consistent with observations. There is evidence over the Equatorial Pacific for a missing source of atmospheric ammonia that could be due to photolysis of marine organic nitrogen at the ocean surface or in the atmosphere. Accommodating this possible missing source yields a global ocean emission of ammonia in the range 2–5 TgN a−1, comparable in magnitude to other natural sources from open fires and soils.