186 resultados para Territorial waters
Resumo:
We review current knowledge and understanding of the biology and ecology of the calanoid copepod Calanus helgolandicus in European waters, as well as provide a collaborative synthesis of data from 18 laboratories and 26 sampling stations in areas distributed from the northern North Sea to the Aegean and Levantine Seas. This network of zooplankton time-series stations has enabled us to collect and synthesise seasonal and multi-annual data on abundance, body size, fecundity, hatching success and vertical distribution of C. helgolandicus. An aim was to enable comparison with its congener Calanus finmarchicus, which has been studied intensively as a key component of European and north east Atlantic marine ecosystems. C. finmarchicus is known to over-winter at depth, whereas the life-cycle of C. helgolandicus is less well understood. Overwintering populations of C. helgolandicus have been observed off the Atlantic coast between 400 and 800 m, while in the Mediterranean there is evidence of significant deep-water populations at depths as great as 4200 m. The biogeographical distribution of C. helgolandicus in European coastal waters covers a wide range of habitats, from open ocean to coastal environments, and its contribution to mesozooplankton biomass ranges from 6% to 93%. Highest abundances were recorded in the Adriatic and off the west coast of Spain. C. helgolandicus is generally found in 9-20 C water, with maximum abundances from 13-17 C. In contrast, C. finmarchicus is found in cooler water between 0 and 15 C, with peak abundances from 0 to 9 C. As water has warmed in the North Atlantic over recent decades, the range of C. helgolandicus and its abundance on the fringes of its expanding range have increased. This review will facilitate development of population models of C. helgolandicus. This will not only help answer remaining questions but will improve our ability to forecast future changes, in response to a warming climate, in the abundance and distribution of this important species.
The physical and chemical oceanography of the waters bathing the continental slope of the Celtic Sea
Resumo:
Accurate identification of stock boundaries is essential for efficient fisheries management, hence the present study focused on the genetic structure of whiting. To this aim, 488 individuals collected from the southern Bay of Biscay to the southern Norwegian coast were genotyped using seven microsatellites. A low level of genetic structuring was detected in Atlantic waters since only the Bay of Biscay differentiated from more northern samples. The lack of genetic structure along the western margin of the British Isles is consistent with a high level of passive transport of pelagic eggs and larvae due to the combined influence of the North Atlantic Current and the Shelf Edge Current. High levels of dispersal could also occur between the western British Isles and the North Sea through both the branching of the North Atlantic Current into the northern North Sea and from the residual current flowing from the English Channel to the Southern Bight. In contrast, a significant genetic structure was identified within the North Sea, and this may be associated with the complex oceanography of this basin and retention systems reducing larval dispersal. In addition, considering also genetic, phenotypic and tag-recapture data collected on whiting, a learned homing behaviour of adults toward spawning areas may be hypothesised.
Resumo:
Centropages chierchiae and Temora stylifera occurred rarely in the Continuous Plankton Recorder (CPR) survey in the Bay of Biscay, Celtic Sea, and English Channel before 1988. By 2000 they were found frequently and in abundance. The seasonal cycles of abundance of these species differ, C. chierchiae occurring mainly in the summer while T. stylifera was found most frequently in late autumn or winter towards the northern limits of its distribution. The increase in abundance of both species is related to temperature. However, in the years when it was found in the samples, the frequency of occurrence of C. chierchiae was correlated positively with the strength of the shelf edge current and negatively with the North Atlantic Oscillation (NAO) while the reverse was true for T. stylifera.