20 resultados para Teorema de Gauss Bonnet
Resumo:
Centropages typicus is a temperate neritic-coastal species of the North Atlantic Oceans, generally found between the latitudes of the Mediterranean and the Norwegian Sea. Therefore, the species experiences a large number of environments and adjusts its life cycle in response to changes in key abiotic parameters such as temperature. Using data from the Continuous Plankton Recorder (CPR) Survey, we review the macroecology of C. typicus and factors that influence its spatial distribution, phenology and year-to-year to decadal variability. The ecological preferences are identified and quantified. Mechanisms that allow the species to occur in such different environments are discussed and hypotheses are proposed as to how the species adapts to its environment. We show that temperature and both quantity and quality of phytoplankton are important factors explaining the space and time variability of C. typicus. These results show that C. typicus will not respond only to temperature increase in the region but also to changes in phytoplankton abundance, structure and composition and timing of occurrence. Methods such as a decision tree can help to forecast expected changes in the distribution of this species with hydro-climatic forcing. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
We review current knowledge and understanding of the biology and ecology of Centropages typicus in the European shelf-seas (e.g. North Sea, English Channel and Bay of Biscay). Our study is based on observations at seven coastal time-series stations as well as on the Continuous Plankton Recorder dataset. This paper focuses on the influence of the environmental parameters (e.g. temperature and Chla) on the life cycle and distribution of C typicus and provides a comparison with its congeneric species C. hamatus and C. chierchiae in the study area. Data on abundance, seasonality and egg production have been used to define the temperature and chlorophyll optima for occurrence and reproduction of Centropages spp. within this region of the European shelf-seas. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Acartia and Paracartia species, often known to co-occur, can exhibit complex life cycles, including the production of resting eggs. Studying and understanding their population dynamics is hindered by the inability to identify eggs and early developmental stages using morphological techniques. We have developed a simple molecular technique to distinguish between the three species of the Acartiidae family (Acartia clausi, A. discaudata and Paracartia grani) that co-occur in the Thau lagoon (43�250N; 03�400E) in southern France. Direct amplification of a partial region of the mitochondrial cytochrome oxidase I gene by polymerase chain reaction and subsequent restriction fragment length polymorphism results in a unique restriction profile for each species. The technique is capable of determining the identity of individual eggs, including resting eggs retrieved from sediment samples, illustrating its application in facilitating population dynamic studies of this ubiquitous and important member of the zooplankton community.
Resumo:
We assess the causes of adult sex ratio skew in marine pelagic copepods by examining changes in these ratios between the juveniles and adults, sexual differences in juvenile stage durations, and mortality rates of adults in the field and laboratory (when free from predators). In the field, late copepodite stages (CIV and CV) commonly have sex ratios that are either not significantly different from equity (1 : 1), or slightly male biased. By contrast, in adults, these ratios are commonly significantly biased toward female dominance. Sex ratio skews are therefore primarily attributable to processes in adults. Members of the non-Diaptomoidea have especially skewed adult ratios; in the members Oithonidae and Clausocalanidae this is not generated from differences between male and female adult physiological longevity (i.e., laboratory longevity when free of predators). In the genera Acartia, Oithona, and Pseudocalanus, we estimate that predation mortality contributed ≥ 69% of the field mortality rate in adult males, whereas in Acartia, Oithona, and Calanus adult females, this is ≥ 36%.We conclude that (1) adult sex ratio skew in pelagic copepods is primarily due to differential mortality of the sexes in the adult stage and not in juveniles, (2) mortality rates of adult Acartia, Pseudocalanus, and Oithona are dominated by predation mortality rather than physiological longevity (except under extreme food limitation), and (3) in Pseudocalanus and Oithona, elevated mortality rates in adult males to females is predominantly due to higher predation on males. Our work demonstrates that we now need to develop a more comprehensive understanding of the importance of feeding preferences in predators. Continue reading full article
Resumo:
Gusmão et al. (2013; Mar Ecol Prog Ser 482:279-298) review causes of sex ratio skew in pelagic copepods and in doing so repeatedly dispute the paper of Hirst et al. (2010) ‘Does predation control adult sex ratios and longevities in marine pelagic copepods?’ Here we respond to some important errors in their citation of our paper and briefly highlight where future work is needed in order to attribute the causes of strong sex ratio skew seen in some copepod families.