27 resultados para Summer of the Aliens
Resumo:
Using an effective combination of multivariate testing and ordination analyses, this study compares the extents to which the diets of two co-occurring fish species (Pagrus auratus and Pseudocaranx georgianus) are related to body size (length class), season and region and the rank order importance of those effects. Thus, volumetric dietary compositions were determined for these species on the lower west coast of Australia, where both are abundant, and for P. auratus from the mid west coast and P. georgianus from the south coast. The diet of P. auratus on the lower west coast was strongly related to body size and slightly less to season. With increasing body size, its diet shifted from predominantly ophiuroids to larger prey, such as brachyuran crabs, teleosts, echinoids and ultimately asteroids, probably reflecting a shift from foraging over soft sediments to areas over and around reefs. Seasonal changes on the lower west coast were restricted mainly to small P. auratus, while larger fish underwent seasonal changes further north. Analyses using a common size range of medium to larger P. auratus demonstrated that dietary composition differed more between regions than seasons. The relationships between diet and length class of P. georgianus on both the lower west and south coasts were less pronounced than for P. auratus and seasonal changes were restricted to the south coast, where amphipod consumption increased markedly in summer. The diet of P. georgianus was related far more to region than length class and season, with more small teleosts, small crabs, carideans and littorinids and less amphipods, isopods and small bivalves being ingested on the lower west than south coasts. Although crabs and teleosts were important typifying prey of P. auratus and P. georgianus, when co-occurring, the former predator tended to ingest greater volumes of larger and often less mobile prey. This reflects differences in dentition, jaw morphology and feeding behaviour and reduces the potential for competition for food resources. The results imply that P. auratus and P. georgianus are opportunistic feeders and that the effects of length class, season and region on dietary composition and their rank orders can vary markedly between species and for length class and season between regions for the same species.
Resumo:
Antarctic krill is a cold water species, an increasingly important fishery resource and a major prey item for many fish, birds and mammals in the Southern Ocean. The fishery and the summer foraging sites of many of these predators are concentrated between 0 degrees and 90 degrees W. Parts of this quadrant have experienced recent localised sea surface warming of up to 0.2 degrees C per decade, and projections suggest that further widespread warming of 0.27 degrees to 1.08 degrees C will occur by the late 21st century. We assessed the potential influence of this projected warming on Antarctic krill habitat with a statistical model that links growth to temperature and chlorophyll concentration. The results divide the quadrant into two zones: a band around the Antarctic Circumpolar Current in which habitat quality is particularly vulnerable to warming, and a southern area which is relatively insensitive. Our analysis suggests that the direct effects of warming could reduce the area of growth habitat by up to 20%. The reduction in growth habitat within the range of predators, such as Antarctic fur seals, that forage from breeding sites on South Georgia could be up to 55%, and the habitat's ability to support Antarctic krill biomass production within this range could be reduced by up to 68%. Sensitivity analysis suggests that the effects of a 50% change in summer chlorophyll concentration could be more significant than the direct effects of warming. A reduction in primary production could lead to further habitat degradation but, even if chlorophyll increased by 50%, projected warming would still cause some degradation of the habitat accessible to predators. While there is considerable uncertainty in these projections, they suggest that future climate change could have a significant negative effect on Antarctic krill growth habitat and, consequently, on Southern Ocean biodiversity and ecosystem services.
Resumo:
Phytoplankton phenology and community structure in the western North Pacific were investigated for 2001–2009, based on satellite ocean colour data and the Continuous Plankton Recorder survey. We estimated the timing of the spring bloom based on the cumulative sum satellite chlorophyll adata, and found that the Pacific Decadal Oscillation (PDO)-related interannual SST anomaly in spring significantly affected phytoplankton phenology. The bloom occurred either later or earlier in years of positive or negative PDO (indicating cold and warm conditions, respectively). Phytoplankton composition in the early summer varied depending on the magnitude of seasonal SST increases, rather than the SST value itself. Interannual variations in diatom abundance and the relative abundance of non-diatoms were positively correlated with SST increases for March–April and May–July, respectively, suggesting that mixed layer environmental factors, such as light availability and nutrient stoichiometry, determine shifts in phytoplankton community structure. Our study emphasised the importance of the interannual variation in climate-induced warm–cool cycles as one of the key mechanisms linking climatic forcing and lower trophic level ecosystems.
Resumo:
The average spatial distribution and annual abundance cycle are described for the copepod Temora longicornis from samples collected on broadscale surveys (1977-2006) and along continuous plankton recorder transects (1961-2006) of the US Northeast continental shelf ecosystem. After its annual low in winter, T. longicornis abundance begins to increase in coastal waters with the northern progression of spring conditions. Annual maximum shelf concentrations were found in the more southern inshore waters of the region during the summer months. Abundance throughout most of the ecosystem increased sharply in the early 1990s and remained high through 2001. During this period, the copepod became more numerous and widespread in offshore shelf waters. Abundance declined to approximately average levels in 2002 for the remainder of the time series, but its extended offshore range remained intact. Correlation analysis found that the copepods interannual abundance variability had a significant negative relationship with surface salinity anomalies throughout the ecosystem, with higher correlations found in the northernmost subareas. Temora longicornis abundance in the ecosystem's southernmost subarea (Middle Atlantic Bight) did not increase in the 1990s and was found to be negatively correlated to surface temperature, indicating that continued global warming could adversely impact the copepods annual abundance cycle in this region.
Resumo:
A multi-sensor satellite approach based on ocean colour, sunglint and Synthetic Aperture Radar imagery is used to study the impact of interacting internal tidal (IT) waves on near-surface chlorophyll-a distribution, in the central Bay of Biscay. Satellite imagery was initially used to characterize the internal solitary wave (ISW) field in the study area, where the “local generation mechanism” was found to be associated with two distinct regions of enhanced barotropic tidal forcing. IT beams formed at the French shelf-break, and generated from critical bathymetry in the vicinities of one of these regions, were found to be consistent with “locally generated” ISWs. Representative case studies illustrate the existence of two different axes of IT propagation originating from the French shelf-break, which intersect close to 46°N, − 7°E, where strong IT interaction has been previously identified. Evidence of constructive interference between large IT waves is then presented and shown to be consistent with enhanced levels of chlorophyll-a concentration detected by means of ocean colour satellite sensors. Finally, the results obtained from satellite climatological mean chlorophyll-a concentration from late summer (i.e. September, when ITs and ISWs can meet ideal propagation conditions) suggest that elevated IT activity plays a significant role in phytoplankton vertical distribution, and therefore influences the late summer ecology in the central Bay of Biscay.
Resumo:
I. The monthly changes in the distribution and abundance of the Copepoda in the southern North Sea have been investigated from June 1932 to December 1937 by using the Continuous Plankton Recorder. This was towed at a standard depth of 10 metres by ships sailing on regular lines from Hull to Rotterdam, to Bremen and towards the Skagerrak, and later from London to Esbjerg. 2. The methods are described and those limitations which apply more particularly to the Copepoda are discussed (pp. 175 to 186 and 198 to 203). 3. The first part of the report deals with the Copepoda as a whole, i.e. the total population. The difference between the summer and winter distributions is stressed. The variations in numbers from year to year are found to be considerable and it is suggested that they are sufficiently large to be reflected in the success or failure of the broods of those fish which are at some period of their development dependent upon the Copepoda for food. 4. The second part deals with the data concerning the constituent species or groups of allied species ; a list of these is given on p. 197. 5. The group Paracalanus + Pseudocalanus was by far the most abundant and together with the genera Temora and Acartia was found to be responsible for most of the fluctuations in the population (pp. 205 to 208). 6. The distributions, seasonal and spatial, of the other common forms are described, with the exception of that of Oalantts finmarchicus which is to be the subject of a later report. 7. The recorder results are compared with the findings of the International Council survey from 1902 to 1908; some marked disagreements are discussed (pp. 227 to 232). 8. The appearance of the northern forms Oandacia armata and Metridia lucens during the winters of 1932-33, 1933-34 and 1937 are recorded (pp. 222 to 223) 9. A summarised account of the main seasonal changes in the area is given (pp. 232 to 234) and followed by a brief comparison of the 5½ years investigated.
Resumo:
The European Slope Current (SC) is a major section of the warm poleward flow from the Atlantic to the Arctic, which also moderates the exchange of heat, salt, nutrients and carbon between the deep ocean and the European shelf seas. The mean structure of the geostrophic flow, seasonality, interannual variability and long-term trend of SC are appraised with an unprecedented continuous 20-year satellite altimeter dataset. Comparisons with long term in situ data showed a maximum correlation of r2=0.51 between altimeter and Acoustic Doppler Current Profilers (ADCP), with similar results for drogued buoy data. Mean geostrophic currents were appraised more comprehensively than previous attempts, and the paths of 4 branches of the North Atlantic Current (NAC) and positions of 5 eddies in the region were derived quantitatively. A consistent seasonal cycle in the flow of the SC was found at all 8 sections along the European shelf slope, with maximum poleward flow in the winter and minimum in the summer. The seasonal difference in the altimetry current speed amounted to ~8-10 cm s-1 at the northern sections, but only ~5 cm s-1 on the Bay of Biscay slopes. This extended altimeter dataset indicates significant regional and seasonal variations, and has revealed new insights into the interannual variability of the SC. It is shown that there is a peak poleward flow at most positions along a ~2000 km stretch of the continental slope from Portugal to Scotland during 1995-1997, but this did not clearly relate to the extreme negative North Atlantic Oscillation (NAO) in the winter of 1995-1996. The speed of the SC exhibited a long term decreasing trend of ~1% per year. By contrast the NAC showed no significant trend over the 20-year period. Major changes in the NAC occurred three times, and these changes followed decreases in the NAO index.
Resumo:
The abundance of ammonia-oxidising bacterial (AOB) and ammonia-oxidising archaeal (AOA) (amoA) genes and ammonia oxidation rates were compared bimonthly from July 2008 to May 2011 in 4 contrasting coastal sediments in the western English Channel. Despite a higher abundance of AOA amoA genes within all sediments and at all time-points, rates of ammonia oxidation correlated with AOB and not AOA amoA gene abundance. Sediment type was a major factor in determining both AOB amoA gene abundance and AOB community structure, possibly due to deeper oxygen penetration into the sandier sediments, increasing the area available for ammonia oxidation. Decreases in AOB amoA gene abundance were evident during summer and autumn, with maximum abundance and ammonia oxidation rates occurring in winter and early spring. PCR-DGGE of AOB amoA genes indicated that no seasonal changes to community composition occurred; however, a gradual movement in community composition occurred at 3 of the sites studied. The lack of correlation between AOA amoA gene abundance and ammonium oxidation rates, or any other environmental variable measured, may be related to the higher spatial variation amongst measurements, obscuring temporal trends, or the bimonthly sampling, which may have been too infrequent to capture temporal variability in the deposition of fresh organic matter. Alternatively, AOA may respond to changing substrate concentrations by an increase or decrease in transcript rather than gene abundance.
Resumo:
We introduce a trait-based description of diatom functional diversity to an existing plankton functional type (PFT) model, implemented for the eutrophied coastal ecosystem in the Southern Bight of the North Sea. The trait-based description represents a continuum of diatom species, each characterized by a distinct cell volume, and includes size dependence of four diatom traits: the maximum growth rate, the half-saturation constants for nutrient uptake, the photosynthetic efficiency, and the relative affinity of copepods for diatoms. Through competition under seasonally varying forcing, the fitness of each diatom varies throughout time, and the outcome of competition results in a changing community structure. The predicted seasonal change in mean cell volume of the community is supported by field observations: smaller diatoms, which are more competitive in terms of resource acquisition, prevail during the first spring bloom, whereas the summer bloom is dominated by larger species which better resist grazing. The size-based model is used to determine the ecological niche of diatoms in the area and identifies a range of viable sizes that matches observations. The general trade-off between small, competitive diatoms and large, grazing-resistant species is a convenient framework to study patterns in diatom functional diversity. PFT models and trait-based approaches constitute promising complementary tools to study community structure in marine ecosystems.
Resumo:
In the Southern Ocean, there is increasing evidence that seasonal to subseasonal temporal scales, and meso- to submesoscales play an important role in understanding the sensitivity of ocean primary productivity to climate change. This drives the need for a high-resolution approach to re- solving biogeochemical processes. In this study, 5.5 months of continuous, high-resolution (3 h, 2 km horizontal resolution) glider data from spring to summer in the Atlantic Subantarctic Zone is used to investigate: (i) the mechanisms that drive bloom initiation and high growth rates in the region and (ii) the seasonal evolution of water column production and respiration. Bloom initiation dates were analysed in the context of upper ocean boundary layer physics highlighting sensitivities of different bloom detection methods to different environmental processes. Model results show that in early spring (September to mid-November) increased rates of net community production (NCP) are strongly affected by meso- to submesoscale features. In late spring/early summer (late-November to mid-December) seasonal shoaling of the mixed layer drives a more spatially homogenous bloom with maximum rates of NCP and chlorophyll biomass. A comparison of biomass accumulation rates with a study in the North Atlantic highlights the sensitivity of phytoplankton growth to fine-scale dynamics and emphasizes the need to sample the ocean at high resolution to accurately resolve phytoplankton phenology and improve our ability to estimate the sensitivity of the biological carbon pump to climate change.
Resumo:
We present air–sea fluxes of carbon dioxide (CO2), methane (CH4), momentum, and sensible heat measured by the eddy covariance method from the recently established Penlee Point Atmospheric Observatory (PPAO) on the south-west coast of the United Kingdom. Measurements from the south-westerly direction (open water sector) were made at three different sampling heights (approximately 15, 18, and 27m above mean sea level, a.m.s.l.), each from a different period during 2014–2015. At sampling heights ≥18ma.m.s.l., measured fluxes of momentum and sensible heat demonstrate reasonable (≤ ±20% in the mean) agreement with transfer rates over the open ocean. This confirms the suitability of PPAO for air–sea exchange measurements in shelf regions. Covariance air–sea CO2 fluxes demonstrate high temporal variability. Air-to-sea transport of CO2 declined from spring to summer in both years, coinciding with the breakdown of the spring phytoplankton bloom. We report, to the best of our knowledge, the first successful eddy covariance measurements of CH4 emissions from a marine environment. Higher sea-to-air CH4 fluxes were observed during rising tides (20±3; 38±3; 29±6 μmolem-2 d-1 at 15, 18, 27ma.m.s.l.) than during falling tides (14±2; 22±2; 21±5 μmolem-2 d-1), consistent with an elevated CH4 source from an estuarine outflow driven by local tidal circulation. These fluxes are a few times higher than the predicted CH4 emissions over the open ocean and are significantly lower than estimates from other aquatic CH4 hotspots (e.g. polar regions, freshwater). Finally, we found the detection limit of the air–sea CH4 flux by eddy covariance to be 20 μmolem-2 d-1 over hourly timescales (4 μmolem-2 d-1 over 24 h).
Resumo:
We present air–sea fluxes of carbon dioxide (CO2), methane (CH4), momentum, and sensible heat measured by the eddy covariance method from the recently established Penlee Point Atmospheric Observatory (PPAO) on the south-west coast of the United Kingdom. Measurements from the south-westerly direction (open water sector) were made at three different sampling heights (approximately 15, 18, and 27m above mean sea level, a.m.s.l.), each from a different period during 2014–2015. At sampling heights ≥18ma.m.s.l., measured fluxes of momentum and sensible heat demonstrate reasonable (≤ ±20% in the mean) agreement with transfer rates over the open ocean. This confirms the suitability of PPAO for air–sea exchange measurements in shelf regions. Covariance air–sea CO2 fluxes demonstrate high temporal variability. Air-to-sea transport of CO2 declined from spring to summer in both years, coinciding with the breakdown of the spring phytoplankton bloom. We report, to the best of our knowledge, the first successful eddy covariance measurements of CH4 emissions from a marine environment. Higher sea-to-air CH4 fluxes were observed during rising tides (20±3; 38±3; 29±6 μmolem-2 d-1 at 15, 18, 27ma.m.s.l.) than during falling tides (14±2; 22±2; 21±5 μmolem-2 d-1), consistent with an elevated CH4 source from an estuarine outflow driven by local tidal circulation. These fluxes are a few times higher than the predicted CH4 emissions over the open ocean and are significantly lower than estimates from other aquatic CH4 hotspots (e.g. polar regions, freshwater). Finally, we found the detection limit of the air–sea CH4 flux by eddy covariance to be 20 μmolem-2 d-1 over hourly timescales (4 μmolem-2 d-1 over 24 h).