25 resultados para Sub-lattices


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an extensive dataset of dimethylsulphide (DMS, n = 651) and dimethylsulphoniopropionate (DMSP, n = 590) from the Atlantic Meridional Transect programme. These data are used to derive representative depth profiles that illustrate observed natural variations and can be used for DMS and DMSP model-validation in oligotrophic waters. To further understand our dataset, we interpret the data with a wide range of accompanying parameters that characterise the prevailing biogeochemical conditions and phytoplankton community physiology, activity, taxonomic composition, and capacity to cope with light stress. No correlations were observed with typical biomarker pigments for DMSP-producing species. However, strong correlations were found between DMSP and primary production by cells >2 µm in diameter, and between DMSP and some photo-protective pigments. These parameters are measures of mixed phytoplankton communities, so we infer that such associations are likely to be stronger in DMSP-producing organisms. Further work is warranted to develop links between community parameters, DMS and DMSP at the global scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inorganic nitrogen depletion restricts productivity in much of the low-latitude oceans, generating a selective advantage for diazotrophic organisms capable of fixing atmospheric dinitrogen (N2). However, the abundance and activity of diazotrophs can in turn be controlled by the availability of other potentially limiting nutrients, including phosphorus (P) and iron (Fe). Here we present high-resolution data (∼0.3°) for dissolved iron, aluminum, and inorganic phosphorus that confirm the existence of a sharp north–south biogeochemical boundary in the surface nutrient concentrations of the (sub)tropical Atlantic Ocean. Combining satellite-based precipitation data with results from a previous study, we here demonstrate that wet deposition in the region of the intertropical convergence zone acts as the major dissolved iron source to surface waters. Moreover, corresponding observations of N2 fixation and the distribution of diazotrophic Trichodesmium spp. indicate that movement in the region of elevated dissolved iron as a result of the seasonal migration of the intertropical convergence zone drives a shift in the latitudinal distribution of diazotrophy and corresponding dissolved inorganic phosphorus depletion. These conclusions are consistent with the results of an idealized numerical model of the system. The boundary between the distinct biogeochemical systems of the (sub)tropical Atlantic thus appears to be defined by the diazotrophic response to spatial–temporal variability in external Fe inputs. Consequently, in addition to demonstrating a unique seasonal cycle forced by atmospheric nutrient inputs, we suggest that the underlying biogeochemical mechanisms would likely characterize the response of oligotrophic systems to altered environmental forcing over longer timescales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concentrations and flux densities of methane were determined during a lagrangian study of an advective filament in the permanent upwelling region off western Mauritania. Newly upwelled waters were dominated by the presence of North Atlantic Central Water and surface CH4 concentrations of 2.2 ± 0.3 nmol L-1 were largely in equilibrium with atmospheric values, with surface saturations of 101.7 ± 14%. As the upwelling filament aged and was advected offshore, CH4 enriched South Atlantic Central Water from intermediate depths of 100 to 350m was entrained into the surface mixed layer of the filament following intense mixing associated with the shelf break. Surface saturations increased to 198.9 ± 15% and flux densities increased from a mean value over the shelf of 2.0 ± 1.1 µmol m-2d-1 to a maximum of 22.6 µmol m-2d-1. Annual CH4 emissions for this persistent filament were estimated at 0.77 ± 0.64 Gg which equates to a maximum of 0.35% of the global oceanic budget. This raises the known outgassing intensity of this area and highlights the importance of advecting filaments from upwelling waters as efficient vehicles for air-sea exchange.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fossil fuel power generation and other industrial emissions of carbon dioxide are a threat to global climate1, yet many economies will remain reliant on these technologies for several decades2. Carbon dioxide capture and storage (CCS) in deep geological formations provides an effective option to remove these emissions from the climate system3. In many regions storage reservoirs are located offshore4, 5, over a kilometre or more below societally important shelf seas6. Therefore, concerns about the possibility of leakage7, 8 and potential environmental impacts, along with economics, have contributed to delaying development of operational CCS. Here we investigate the detectability and environmental impact of leakage from a controlled sub-seabed release of CO2. We show that the biological impact and footprint of this small leak analogue (<1 tonne CO2 d−1) is confined to a few tens of metres. Migration of CO2 through the shallow seabed is influenced by near-surface sediment structure, and by dissolution and re-precipitation of calcium carbonate naturally present in sediments. Results reported here advance the understanding of environmental sensitivity to leakage and identify appropriate monitoring strategies for full-scale carbon storage operations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon capture and storage is a mitigation strategy that can be used to aid the reduction of anthropogenic CO2 emissions. This process aims to capture CO2from large point-source emitters and transport it to a long-term storage site. For much of Europe, these deep storage sites are anticipated to be sited below the sea bed on continental shelves. A key operational requirement is an understanding of best practice of monitoring for potential leakage and of the environmental impact that could result from a diffusive leak from a storage complex. Here we describe a controlled CO2release experiment beneath the seabed, which overcomes the limitations of laboratory simulations and natural analogues. The complex processes involved in setting up the experimental facility and ensuring its successful operation are discussed, including site selection, permissions, communications and facility construction. The experimental design and observational strategy are reviewed with respect to scientific outcomes along with lessons learnt in order to facilitate any similar future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The response of the benthic microbial community to a controlled sub-seabed CO2 leak was assessed using quantitative PCR measurements of benthic bacterial, archaeal and cyanobacteria/chloroplast 16S rRNA genes. Samples were taken from four zones (epicentre; 25 m distant, 75 m distant and 450 m distant) during 6 time points (7 days before CO2 exposure, after 14 and 36 days of CO2 release, and 6, 20 and 90 days after the CO2 release had ended). Changes to the active community of microphytobenthos and bacteria were also assessed before, during and after CO2 release. Increases in the abundance of microbial 16S rRNA were detected after 14 days of CO2 release and at a distance of 25 m from the epicentre. CO2 related changes to the relative abundance of both major and minor bacterial taxa were detected: most notably an increase in the relative abundance of the Planctomycetacia after 14 days of CO2 release. Also evident was a decrease in the abundance of microbial 16S rRNA genes at the leak epicentre during the initial recovery phase: this coincided with the highest measurements of DIC within the sediment, but may be related to the release of potentially toxic metals at this time point.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of a sub-seabed CO2 leak from geological sequestration on the microbial process of ammonia oxidation was investigated in the field. Sediment samples were taken before, during and after a controlled sub-seabed CO2 leak at four zones differing in proximity to the CO2 source (epicentre, and 25m, 75m, and 450m distant). The impact of CO2 release on benthic microbial ATP levels was compared to ammonia oxidation rates and the abundance of bacterial and archaeal ammonia amoA genes and transcripts, and also to the abundance of nitrite oxidize (nirS) and anammox hydrazine oxidoreductase (hzo) genes and transcripts. The major factor influencing measurements was seasonal: only minor differences were detected at the zones impacted by CO2 (epicentre and 25m distant). This included a small increase to ammonia oxidation after 37daysof CO2 release which was linked to an increase in ammonia availability as a result of mineral dissolution. A CO2 leak on the scale used within this study (<1tonneday−1) would have very little impact to ammonia oxidation within coastal sediments. However, seawater containing 5% CO2 did reduce rates of ammonia oxidation. This was linked to the buffering capacity of the sediment, suggesting that the impact of a sub-seabed leak of stored CO2 on ammonia oxidation would be dependent on both the scale of the CO2 release and sediment type.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A sub-seabed release of carbon dioxide (CO2) was conducted to assess the potential impacts of leakage from sub-seabed geological CO2 Capture and Storage CCS) on benthic macrofauna. CO2 gas was released 12 m below the seabed for 37 days, causing significant disruption to sediment carbonate chemistry. Regular macrofauna samples were collected from within the area of active CO2 leakage (Zone 1) and in three additional reference areas, 25 m, 75 m and 450 m from the centre of the leakage (Zones 2, 3 and 4 respectively). Macrofaunal community structure changed significantly in all zones during the study period. However, only the changes in Zone 1 were driven by the CO2 leakage with the changes in reference zones appearing to reflect natural seasonal succession and stochastic weather events. The impacts in Zone 1 occurred rapidly (within a few days), increased in severity through the duration of the leak, and continued to worsen after the leak had stopped. Considerable macrofaunal recovery was seen 18 days after the CO2 gas injection had stopped. In summary, small short-term CCS leakage events are likely to cause highly localised impacts on macrofaunal communities and there is the potential for rapid recovery to occur, depending on the characteristics of the communities and habitats impacted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 2012, a controlled sub-seabed release of carbon dioxide (CO2) was conducted in Ardmucknish Bay, a shallow (12 m) coastal bay on the west coast of Scotland. During the experiment, CO2 gas was released 12 m below the seabed for 37 days, causing significant disruption to sediment and water carbonate chemistry as the gas passed up through the sediment and into the overlying water. One of the aims of the study was to investigate how the impacts caused by leakage from geological CO2 Capture and Storage (CCS) could be detected and quantified in the context of natural heterogeneity and dynamics. To do this underwater photography was used to analyze (i) the benthic megafaunal response to the CO2 release and (ii) the dynamics of the CO2 bubble streams, emerging from the seabed into the overlying water column. The frequently observed megafauna species in the study area were Virgularia mirabilis (Cnidaria), Turritella communis (Mollusca), Asterias rubens (Echinodermata), Pagurus bernhardus (Crustacea), Liocarcinus depurator (Crustacea), and Gadus morhua (Osteichthyes). No discernable abnormal behavior was observed for these megafauna, in any of the zones investigated, during or after the CO2 release. Time-lapse photography revealed that the intensity and presence of the CO2 bubble plume was affected by the tides, with the most active bubbling seen at low tides and the larger hydrostatic pressure at high tide suppressing CO2 bubbling from the seabed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fossil fuel power generation and other industrial emissions of carbon dioxide are a threat to global climate1, yet many economies will remain reliant on these technologies for several decades2. Carbon dioxide capture and storage (CCS) in deep geological formations provides an effective option to remove these emissions from the climate system3. In many regions storage reservoirs are located offshore4, 5, over a kilometre or more below societally important shelf seas6. Therefore, concerns about the possibility of leakage7, 8 and potential environmental impacts, along with economics, have contributed to delaying development of operational CCS. Here we investigate the detectability and environmental impact of leakage from a controlled sub-seabed release of CO2. We show that the biological impact and footprint of this small leak analogue (<1 tonne CO2 d−1) is confined to a few tens of metres. Migration of CO2 through the shallow seabed is influenced by near-surface sediment structure, and by dissolution and re-precipitation of calcium carbonate naturally present in sediments. Results reported here advance the understanding of environmental sensitivity to leakage and identify appropriate monitoring strategies for full-scale carbon storage operations.