19 resultados para Sponges, Fossil
Resumo:
Global warming and its link to the burning of fossil fuels has prompted many governments around the world to set legally binding greenhouse gas reduction targets which are to be partially realised through a stronger reliance on renewable (e.g. wind) and other lower carbon (i.e. natural gas and nuclear) energy commodities. The marine environment will play a key role in hosting or supporting these new energy strategies. However, it is unclear how the construction, operation and eventual decommissioning of these energy systems, and their related infrastructure, will impact the marine environment, the ecosystem services (i.e. cultural, regulating, provisioning and supporting) and in turn the benefits it provides for human well-being. This uncertainty stems from a lack of research that has synthesised into a common currency the various effects of each energy sector on marine ecosystems and the benefits humans derive from it. To address this gap, the present study reviews existing ecosystem impact studies for offshore components of nuclear, offshore wind, offshore gas and offshore oil sectors and translates them into the common language of ecosystem service impacts that can be used to evaluate current policies. The results suggest that differences exist in the way in which energy systems impact ecosystem services, with the nuclear sector having a predominantly negative impact on cultural ecosystem services; oil and gas a predominately negative impact on cultural, provisioning, regulating and supporting ecosystem services; while wind has a mix of impacts on cultural, provisioning and supporting services and an absence of studies for regulating services. This study suggests that information is still missing with regard to the full impact of these energy sectors on specific types of benefits that humans derive from the marine environment and proposes possible areas of targeted research.
Resumo:
Gephyrocapsa oceanica is a cosmopolitan bloom-forming coccolithophore species belonging to the haptophyte order Isochrysidales and family Noëlaerhabdaceae. Exclusively pelagic, G. oceanica is commonly found in modern oceans and in fossil assemblages. Its sister species Emiliania huxleyi is known to possess a haplo-diplontic life cycle, the non-motile diploid coccolith-bearing cells alternating with haploid cells that are motile and covered by non-mineralized organic scales. Since the cytology and ultrastructure of other members of the Noëlaerhabdaceae has never been reported, it is not clear whether these features are common to the family. Here, we report on the ultrastructure of both the non-motile calcifying stage and the non-calcifying motile stage of G. oceanica. We found no significant ultrastructural differences between E. huxleyi and G. oceanica either in the calcifying diploid stage or the haploid phase. The similarities between these two morphospecies demonstrated a high degree of conservation of cytological features. We discuss the significance of these results in the light of the evolution of the Noelaerhabdaceae.
Resumo:
Fossil fuel power generation and other industrial emissions of carbon dioxide are a threat to global climate1, yet many economies will remain reliant on these technologies for several decades2. Carbon dioxide capture and storage (CCS) in deep geological formations provides an effective option to remove these emissions from the climate system3. In many regions storage reservoirs are located offshore4, 5, over a kilometre or more below societally important shelf seas6. Therefore, concerns about the possibility of leakage7, 8 and potential environmental impacts, along with economics, have contributed to delaying development of operational CCS. Here we investigate the detectability and environmental impact of leakage from a controlled sub-seabed release of CO2. We show that the biological impact and footprint of this small leak analogue (<1 tonne CO2 d−1) is confined to a few tens of metres. Migration of CO2 through the shallow seabed is influenced by near-surface sediment structure, and by dissolution and re-precipitation of calcium carbonate naturally present in sediments. Results reported here advance the understanding of environmental sensitivity to leakage and identify appropriate monitoring strategies for full-scale carbon storage operations.
Resumo:
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates as well as consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover change (some including nitrogen–carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2005–2014), EFF was 9.0 ± 0.5 GtC yr−1, ELUC was 0.9 ± 0.5 GtC yr−1, GATM was 4.4 ± 0.1 GtC yr−1, SOCEAN was 2.6 ± 0.5 GtC yr−1, and SLAND was 3.0 ± 0.8 GtC yr−1. For the year 2014 alone, EFF grew to 9.8 ± 0.5 GtC yr−1, 0.6 % above 2013, continuing the growth trend in these emissions, albeit at a slower rate compared to the average growth of 2.2 % yr−1 that took place during 2005–2014. Also, for 2014, ELUC was 1.1 ± 0.5 GtC yr−1, GATM was 3.9 ± 0.2 GtC yr−1, SOCEAN was 2.9 ± 0.5 GtC yr−1, and SLAND was 4.1 ± 0.9 GtC yr−1. GATM was lower in 2014 compared to the past decade (2005–2014), reflecting a larger SLAND for that year. The global atmospheric CO2 concentration reached 397.15 ± 0.10 ppm averaged over 2014. For 2015, preliminary data indicate that the growth in EFF will be near or slightly below zero, with a projection of −0.6 [range of −1.6 to +0.5] %, based on national emissions projections for China and the USA, and projections of gross domestic product corrected for recent changes in the carbon intensity of the global economy for the rest of the world. From this projection of EFF and assumed constant ELUC for 2015, cumulative emissions of CO2 will reach about 555 ± 55 GtC (2035 ± 205 GtCO2) for 1870–2015, about 75 % from EFF and 25 % from ELUC. This living data update documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this data set (Le Quéré et al., 2015, 2014, 2013). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2015).