20 resultados para Scophthamus maximus


Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the 1970s and 1980s, the late Dr Norman Holme undertook extensive towed sledge surveys in the English Channel and some in the Irish Sea. Only a minority of the resulting images were analysed and reported before his death in 1989 but logbooks, video and film material has been archived in the National Marine Biological Library (NMBL) in Plymouth. A study was therefore commissioned by the Joint Nature Conservation Committee and as a part of the Mapping European Seabed Habitats (MESH) project to identify the value of the material archived and the procedure and cost to undertake further work (Phase 1 of the study reported here: Oakley & Hiscock, 2005). Some image analysis was undertaken as a part of Phase 1. Phase 2 (this report) was to further analyse selected images. Having determined in Phase 1 that only the 35 mm photographic transparencies provided sufficient clarity to identify species and biotopes, the tows selected for analysis were ones where 35mm images had been taken. The tows selected for analysis of images were mainly in the vicinity of Plymouth and especially along the area between Rame Head and the region of the Eddystone. The 35 mm films were viewed under a binocular microscope and the taxa that could be recognised recorded in note form. Twenty-five images were selected for inclusion in the report. Almost all of the images were of level sediment seabed. Where rocks were included, it was usually unplanned and the sled was hauled before being caught or damaged. The main biotopes or biotope complexes identified were: SS.SMU.CSaMu. Circalittoral sandy mud. Extensively present between the shore and the Eddystone Reef complex and at depths of about 48 to 52 m. At one site offshore of Plymouth Sound, the turret shell Turritella communis was abundant. In some areas, this biotope had dense anemones, Mesacmaea mitchelli and (more rarely) Cerianthus lloydii. Queen scallops, Aequipecten opercularis and king scallops, Pecten maximus, were sometimes present in small numbers. Hard substratum species such as hydroids, dead mens fingers Alcyonium digitatum and the cup coral Caryophyllia smithii occurred in a few places, probably attached to shells or stones beneath the surface. South of the spoil ground off Hilsea Point at 57m depth, the sediment was muddier but is still assigned to this biotope complex. It is notable that three small sea pens, most likely Virgularia mirabilis, were seen here. SS.SMx.CMx. Circalittoral mixed sediment. Further offshore but at about the same depth as SS.SMU.CSaMu occurred, coarse gravel with some silt was present. The sediment was characterised must conspicuously by small queen scallops, Aequipecten opercularis. Peculiarly, there were ‘bundles’ of the branching bryozoan Cellaria sp. – a species normally found attached to rock. It could not be seen whether these bundles of Cellaria had been brought-together by terebellid worms but it is notable that Cellaria is recorded in historical surveys. As with many other sediments, there were occasional brittle stars, Ophiocomina nigra and Ophiura ophiura. Where sediments were muddy, the burrowing anemone Mesacmaea mitchelli was common. Where pebbles or cobbles occurred, there were attached species such as Alcyonium digitatum, Caryophyllia smithii and the fleshy bryozoan Alcyonidium diaphanum. Undescribed biotope. Although most likely a part of SS.SMx.CMx, the biotope visually dominated by a terebellid worm believed to be Thelepus cincinnatua, is worth special attention as it may be an undescribed biotope. The biotope occurred about 22 nautical miles south of the latitude of the Eddystone and in depths in excess of 70 m. SS.SCS.CCS.Blan. Branchiostoma lanceolatum in circalittoral coarse sand with shell gravel at about 48m depth and less. This habitat was the ‘classic’ ‘Eddystone Shell Gravel’ which is sampled for Branchiostoma lanceolatum. However, no Branchiostoma lanceolatum could be seen. The gravel was almost entirely bare of epibiota. There were occasional rock outcrops or cobbles which had epibiota including encrusting calcareous algae, the sea fan Eunicella verrucosa, cup corals, Caryophyllia smithii, hydroids and a sea urchin Echinus esculentus. The variety of species visible on the surface is small and therefore identification to biotope not usually possible. Historical records from sampling surveys that used grabs and dredges at the end of the 19th century and early 20th century suggest similar species present then. Illustrations of some of the infaunal communities from work in the 1920’s is included in this report to provide a context to the epifaunal photographs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the mechanisms linking oceanographic processes and marine vertebrate habitat use is critical to effective management of populations of conservation concern. The basking shark Cetorhinus maximus has been shown to associate with oceanographic fronts – physical interfaces at the transitions between water masses – to exploit foraging opportunities resulting from aggregation of zooplankton. However, the scale, significance and variability of these observed associations have not yet been established. Here, we quantify the influence of mesoscale (10s – 100s km) frontal activity on habitat use over timescales of weeks to months. We use animal-mounted archival tracking with composite front mapping via Earth Observation (EO) remote sensing to provide an oceanographic context to individual shark movements. We investigate levels of association with fronts occurring over two spatio-temporal scales, (i) broad-scale seasonally persistent frontal zones and (ii) contemporaneous mesoscale thermal and chl-a fronts. Using random walk simulations and logistic regression within an iterative generalised linear mixed modelling (GLMM) framework, we find that seasonal front frequency is a significant predictor of shark presence. Temporally-matched oceanographic metrics also indicate that sharks demonstrate a preference for productive regions, and associate with contemporaneous thermal and chl-a fronts more frequently than could be expected at random. Moreover, we highlight the importance of cross-frontal temperature change and persistence, which appear to interact to affect the degree of prey aggregation along thermal fronts. These insights have clear implications for understanding the preferred habitats of basking sharks in the context of anthropogenic threat management and marine spatial planning in the northeast Atlantic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the mechanisms linking oceanographic processes and marine vertebrate habitat use is critical to effective management of populations of conservation concern. The basking shark Cetorhinus maximus has been shown to associate with oceanographic fronts – physical interfaces at the transitions between water masses – to exploit foraging opportunities resulting from aggregation of zooplankton. However, the scale, significance and variability of these observed associations have not yet been established. Here, we quantify the influence of mesoscale (10s – 100s km) frontal activity on habitat use over timescales of weeks to months. We use animal-mounted archival tracking with composite front mapping via Earth Observation (EO) remote sensing to provide an oceanographic context to individual shark movements. We investigate levels of association with fronts occurring over two spatio-temporal scales, (i) broad-scale seasonally persistent frontal zones and (ii) contemporaneous mesoscale thermal and chl-a fronts. Using random walk simulations and logistic regression within an iterative generalised linear mixed modelling (GLMM) framework, we find that seasonal front frequency is a significant predictor of shark presence. Temporally-matched oceanographic metrics also indicate that sharks demonstrate a preference for productive regions, and associate with contemporaneous thermal and chl-a fronts more frequently than could be expected at random. Moreover, we highlight the importance of cross-frontal temperature change and persistence, which appear to interact to affect the degree of prey aggregation along thermal fronts. These insights have clear implications for understanding the preferred habitats of basking sharks in the context of anthropogenic threat management and marine spatial planning in the northeast Atlantic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since the early part of the 20th Century the impact of a range of anthropogenic activities in our coastal seas has steadily increased. The effect of such activities is a major cause for concern but in the benthic environment few studies exist that date back more than a few decades. Hence understanding long term changes is a challenge. Within this study we utilized a historic benthic dataset and resurveyed an area west of Eddystone reef in the English Channel previously investigated 112 years ago. The aim of the present work was to describe the current benthic community structure and investigate potential differences between 1895 and 2007. For each of the four major phyla investigated (Polychaeta, Crustacea, Mollusca and Echinodermata), multivariate community analysis showed significant differences between the historic and contemporary surveys. Echinoderm diversity showed a clear reduction between 1895 and 2007. The sea urchins Echinus esculentus, Spatangus purpureus, and Psammechinus miliaris and large star-fish Marthasterias glacialis showed reductions in abundance, in some cases being entirely absent from the survey area in 2007. Polychaetes showed a shift from tubiculous species to small errant and predatory species such as Glycera, Nephtys, and Lumbrineris spp. Within the group Mollusca large species such as Pecten maximus and Laevicardium crassum decreased in abundance while small species increased. Crustaceans in 1895 were dominated by crab species which were present in similar abundances in 2007, but, the order Amphipoda appeared to show a significant increase. While some of the differences observed could stem from differences in methodologies between the surveys, in particular increases of small cryptic species, the loss of large conspicuous species was judged to be genuine. The study area is an important beam trawling and scallop dredging ground; the differences observed are concomitant with changes generally associated with disturbance from demersal fishing activities such as these.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the mechanisms linking oceanographic processes and marine vertebrate habitat use is critical to effective management of populations of conservation concern. The basking shark Cetorhinus maximus has been shown to associate with oceanographic fronts – physical interfaces at the transitions between water masses – to exploit foraging opportunities resulting from aggregation of zooplankton. However, the scale, significance and variability of these observed associations have not yet been established. Here, we quantify the influence of mesoscale (10s – 100s km) frontal activity on habitat use over timescales of weeks to months. We use animal-mounted archival tracking with composite front mapping via Earth Observation (EO) remote sensing to provide an oceanographic context to individual shark movements. We investigate levels of association with fronts occurring over two spatio-temporal scales, (i) broad-scale seasonally persistent frontal zones and (ii) contemporaneous mesoscale thermal and chl-a fronts. Using random walk simulations and logistic regression within an iterative generalised linear mixed modelling (GLMM) framework, we find that seasonal front frequency is a significant predictor of shark presence. Temporally-matched oceanographic metrics also indicate that sharks demonstrate a preference for productive regions, and associate with contemporaneous thermal and chl-a fronts more frequently than could be expected at random. Moreover, we highlight the importance of cross-frontal temperature change and persistence, which appear to interact to affect the degree of prey aggregation along thermal fronts. These insights have clear implications for understanding the preferred habitats of basking sharks in the context of anthropogenic threat management and marine spatial planning in the northeast Atlantic.