18 resultados para SOUTH-WESTERN-AUSTRALIA
Resumo:
An extensive literature base worldwide demonstrates how spatial differences in estuarine fish assemblages are related to those in the environment at (bio)regional, estuary-wide or local (within-estuary) scales. Few studies, however, have examined all three scales, and those including more than one have often focused at the level of individual environmental variables rather than scales as a whole. This study has identified those spatial scales of environmental differences, across regional, estuary-wide and local levels, that are most important in structuring ichthyofaunal composition throughout south-western Australian estuaries. It is the first to adopt this approach for temperate microtidal waters. To achieve this, we have employed a novel approach to the BIOENV routine in PRIMER v6 and a modified global BEST test in an alpha version of PRIMER v7. A combination of all three scales best matched the pattern of ichthyofaunal differences across the study area (rho = 0.59; P = 0.001), with estuary-wide and regional scales accounting for about twice the variability of local scales. A shade plot analysis showed these broader-scale ichthyofaunal differences were driven by a greater diversity of marine and estuarine species in the permanently-open west coast estuaries and higher numbers of several small estuarine species in the periodically-open south coast estuaries. When interaction effects were explored, strong but contrasting influences of local environmental scales were revealed within each region and estuary type. A quantitative decision tree for predicting the fish fauna at any nearshore estuarine site in south-western Australia has also been produced. The estuarine management implications of the above findings are highlighted.
Resumo:
The Region comprises three sub-regions (FAO Statistical Areas) with very different characteristics. The South Pacific includes the vast and virtually unpopulated Southern Ocean surrounding the Antarctic. It has the world’s largest fisheries off Peru and Chile and some of the world’s best managed fisheries in Australia and New Zealand. The Region has over 27% of the world’s ocean area and over 98% of the Region’s total area of 91 million km2 is ‘open ocean’. The Region contains less than 5% of the global continental shelf area and only a fraction of this area is covered by three large marine ecosystems (the New Zealand Shelf, the Humboldt Current and the Antarctic large marine ecosystems (LMEs). The Humboldt Current System (HCS) is the world’s largest upwelling which provides nutrients for the world’s largest fisheries. The Region also has a high number of seamounts. The marine capture fisheries of the Region produce over 13 million tons annually and an expanding aquaculture industry produces over 1.5 million tons. Peru’s anchoveta fishery provides about half the world’s supply of fish meal and oil, key ingredients of animal and fish feeds. El Niño Southern Oscillations (ENSOs), known more generally as El Niños, can substantially change the species composition of the key small pelagic catches (anchovy, sardine, horse mackerel and jack mackerel) causing production to fluctuate from about 4-8 million tons. Partly due to the lack of upwelling and shelf areas, fisheries production in the Southern Ocean and Area 81 is relatively small but supports economically important commercial and recreational fisheries and aquaculture in New Zealand and in New South Wales (Australia). Krill remains a major underexploited resource, but is also a keystone species in the Antarctic food web. The Region is home to numerous endangered species of whales, seals and seabirds and has a high number of seamounts, vulnerable ecosystems fished for high-value species such as orange roughy.
Resumo:
The Region comprises three sub-regions (FAO Statistical Areas) with very different characteristics. The South Pacific includes the vast and virtually unpopulated Southern Ocean surrounding the Antarctic. It has the world’s largest fisheries off Peru and Chile and some of the world’s best managed fisheries in Australia and New Zealand. The Region has over 27% of the world’s ocean area and over 98% of the Region’s total area of 91 million km2 is ‘open ocean’. The Region contains less than 5% of the global continental shelf area and only a fraction of this area is covered by three large marine ecosystems (the New Zealand Shelf, the Humboldt Current and the Antarctic large marine ecosystems (LMEs). The Humboldt Current System (HCS) is the world’s largest upwelling which provides nutrients for the world’s largest fisheries. The Region also has a high number of seamounts. The marine capture fisheries of the Region produce over 13 million tons annually and an expanding aquaculture industry produces over 1.5 million tons. Peru’s anchoveta fishery provides about half the world’s supply of fish meal and oil, key ingredients of animal and fish feeds. El Niño Southern Oscillations (ENSOs), known more generally as El Niños, can substantially change the species composition of the key small pelagic catches (anchovy, sardine, horse mackerel and jack mackerel) causing production to fluctuate from about 4-8 million tons. Partly due to the lack of upwelling and shelf areas, fisheries production in the Southern Ocean and Area 81 is relatively small but supports economically important commercial and recreational fisheries and aquaculture in New Zealand and in New South Wales (Australia). Krill remains a major underexploited resource, but is also a keystone species in the Antarctic food web. The Region is home to numerous endangered species of whales, seals and seabirds and has a high number of seamounts, vulnerable ecosystems fished for high-value species such as orange roughy.