18 resultados para Random equivalent availability
Resumo:
Scepticism over stated preference surveys conducted online revolves around the concerns over “professional respondents” who might rush through the questionnaire without sufficiently considering the information provided. To gain insight on the validity of this phenomenon and test the effect of response time on choice randomness, this study makes use of a recently conducted choice experiment survey on ecological and amenity effects of an offshore windfarm in the UK. The positive relationship between self-rated and inferred attribute attendance and response time is taken as evidence for a link between response time and cognitive effort. Subsequently, the generalised multinomial logit model is employed to test the effect of response time on scale, which indicates the weight of the deterministic relative to the error component in the random utility model. Results show that longer response time increases scale, i.e. decreases choice randomness. This positive scale effect of response time is further found to be non-linear and wear off at some point beyond which extreme response time decreases scale. While response time does not systematically affect welfare estimates, higher response time increases the precision of such estimates. These effects persist when self-reported choice certainty is controlled for. Implications of the results for online stated preference surveys and further research are discussed.
Resumo:
Efficient searching is crucial for timely location of food and other resources. Recent studies show diverse living animals employ a theoretically optimal scale-free random search for sparse resources known as a Lévy walk, but little is known of the origins and evolution of foraging behaviour and the search strategies of extinct organisms. Here we show using simulations of self-avoiding trace fossil trails that randomly introduced strophotaxis (U-turns) – initiated by obstructions such as ¬¬¬self-trail avoidance or innate cueing – leads to random looping patterns with clustering across increasing scales that is consistent with the presence of Lévy walks. This predicts optimal Lévy searches can emerge from simple behaviours observed in fossil trails. We then analysed fossilized trails of benthic marine organisms using a novel path analysis technique and find the first evidence of Lévy-like search strategies in extinct animals. Our results show that simple search behaviours of extinct animals in heterogeneous environments give rise to hierarchically nested Brownian walk clusters that converge to optimal Lévy patterns. Primary productivity collapse and large-scale food scarcity characterising mass extinctions evident in the fossil record may have triggered adaptation of optimal Lévy-like searches. The findings suggest Lévy-like behaviour has been employed by foragers since at least the Eocene but may have a more ancient origin, which could explain recent widespread observations of such patterns among modern taxa.
Resumo:
Disentangling the roles of environmental change and natural environmental variability on biologically mediated ecosystem processes is paramount to predict future marine ecosystem functioning. Bioturbation, the biogenic mixing of sediments, has a regulating role in marine biogeochemical processes. However, our understanding of bioturbation as a community level process and of its environmental drivers is still limited by loose use of terminology, and a lack of consensus about what bioturbation is. To help resolve these challenges, this empirical study investigated the links between four different attributes of bioturbation (bioturbation depth, activity and distance, and biodiffusive transport); the ability of an index of bioturbation (BPc) to predict each of them; and their relation to seasonality, in a shallow coastal system – the Western Channel Observatory, UK. Bioturbation distance depended on changes in benthic community structure, while the other three attributes were more directly influenced by seasonality in food availability. In parallel, BPc successfully predicted bioturbation distance but not the other attributes of bioturbation. This study therefore highlights that community bioturbation results from this combination of processes responding to environmental variability at different time-scales. However, community level measurements of bioturbation across environmental variability are still scarce, and BPc is calculated using commonly available data on benthic community structure and the functional classification of invertebrates. Therefore, BPc could be used to support the growth of landscape scale bioturbation research, but future uses of the index need to consider which bioturbation attributes the index actually predicts. As BPc predicts bioturbation distance, estimated here using a random-walk model applicable to community settings, studies using either of the metrics should be directly comparable and contribute to a more integrated future for bioturbation research.