19 resultados para Pulmonary Gas Exchange
Resumo:
In the troposphere, methanol (CH3OH) is present ubiquitously and second in abundance among organic gases after methane. In the surface ocean, methanol represents a supply of energy and carbon for marine microbes. Here we report direct measurements of air-sea methanol transfer along a similar to 10,000-km north-south transect of the Atlantic. The flux of methanol was consistently from the atmosphere to the ocean. Constrained by the aerodynamic limit and measured rate of air-sea sensible heat exchange, methanol transfer resembles a one-way depositional process, which suggests dissolved methanol concentrations near the water surface that are lower than what were measured at similar to 5 m depth, for reasons currently unknown. We estimate the global oceanic uptake of methanol and examine the lifetimes of this compound in the lower atmosphere and upper ocean with respect to gas exchange. We also constrain the molecular diffusional resistance above the ocean surface-an important term for improving air-sea gas exchange models.
Resumo:
The distribution patterns of many species in the intertidal zone are partly determined by their ability to survive and recover from tidal emersion. During emersion, most crustaceans experience gill collapse, impairing gas exchange. Such collapse generates a state of hypoxemia and a hypercapnia-induced respiratory acidosis, leading to hyperlactaemia and metabolic acidosis. However, how such physiological responses to emersion are modified by prior exposure to elevated CO2 and temperature combinations, indicative of future climate change scenarios, is not known. We therefore investigated key physiological responses of velvet swimming crabs, Necora puber, kept for 14 days at one of four pCO(2)/temperature treatments (400 mu atm/10 degrees C, 1000 mu atm/10 degrees C, 400 mu atm/15 degrees C or 1000 mu atm/15 degrees C) to experimental emersion and recovery. Pre-exposure to elevated pCO(2) and temperature increased pre-emersion bicarbonate ion concentrations [HCO3-], increasing resistance to short periods of emersion (90 min). However, there was still a significant acidosis following 180 min emersion in all treatments. The recovery of extracellular acid-base via the removal of extracellular pCO(2) and lactate after emersion was significantly retarded by exposure to both elevated temperature and pCO(2). If elevated environmental pCO(2) and temperature lead to slower recovery after emersion, then some predominantly subtidal species that also inhabit the low to mid shore, such as N. puber, may have a reduced physiological capacity to retain their presence in the low intertidal zone, ultimately affecting their bathymetric range of distribution, as well as the structure and diversity of intertidal assemblages.
Resumo:
The dispersion of a patch of the tracer sulfur hexafluoride (SF6) is used to assess the lateral diffusivity in the coastal waters of the western part of the Gulf of Lion (GoL), northwestern Mediterranean Sea, during the Latex10 experiment (September 2010). Immediately after the release, the spreading of the patch is associated with a strong decrease of the SF6 concentrations due to the gas exchange from the ocean to the atmosphere. This has been accurately quantified, evidencing the impact of the strong wind conditions during the first days of this campaign. Few days after the release, as the atmospheric loss of SF6 decreased, lateral diffusivity coefficient at spatial scales of 10 km has been computed using two approaches. First, the evolution of the patch with time was combined with a diffusion-strain model to obtain estimates of the strain rate (γ = 2.5 10- 6 s- 1) and of the lateral diffusivity coefficient (Kh = 23.2 m2s− 1). Second, a steady state model was applied, showing Kh values similar to the previous method after a period of adjustment between 2 and 4.5 days. This implies that after such period, our computation of Kh becomes insensitive to the inclusion of further straining of the patch. Analysis of sea surface temperature satellite imagery shows the presence of a strong front in the study area. The front clearly affected the dynamics within the region and thus the temporal evolution of the patch. Our results are consistent with previous studies in open ocean and demonstrate the success and feasibility of those methods also under small-scale, rapidly-evolving dynamics typical of coastal environments.
Resumo:
Physical oceanography is the study of physical conditions, processes and variables within the ocean, including temperature-salinity distributions, mixing of the water column, waves, tides, currents, and air-sea interaction processes. Here we provide a critical review of how satellite sensors are being used to study physical oceanography processes at the ocean surface and its borders with the atmosphere and sea-ice. The paper begins by describing the main sensor types that are used to observe the oceans (visible, thermal infrared and microwave) and the specific observations that each of these sensor types can provide. We then present a critical review of how these sensors and observations are being used to study i) ocean surface currents, ii) storm surges, iii) sea-ice, iv) atmosphere-ocean gas exchange and v) surface heat fluxes via phytoplankton. Exciting advances include the use of multiple sensors in synergy to observe temporally varying Arctic sea-ice volume, atmosphere- ocean gas fluxes, and the potential for 4 dimensional water circulation observations. For each of these applications we explain their relevance to society, review recent advances and capability, and provide a forward look at future prospects and opportunities. We then more generally discuss future opportunities for oceanography-focussed remote-sensing, which includes the unique European Union Copernicus programme, the potential of the International Space Station and commercial miniature satellites. The increasing availability of global satellite remote-sensing observations means that we are now entering an exciting period for oceanography. The easy access to these high quality data and the continued development of novel platforms is likely to drive further advances in remote sensing of the ocean and atmospheric systems.