27 resultados para Productivity tools competency
Resumo:
Spatiotemporal variation in seabird demographic parameters is often pronounced and may be an important source of information on the state of marine ecosystems. Black-legged kittiwakes Rissa tridactyla in Britain and Ireland show strong regional structure in breeding productivity, and both temporal and spatial variation are probably related to abundance of the principal prey of breeding kittiwakes, the lesser sandeel Ammodytes marinus. Annual regional estimates of sandeel abundance do not exist, prohibiting direct tests of this hypothesis. We examined relationships between kittiwake breeding productivity and 2 potential proxies of sandeel abundance, winter sea surface temperature (SST) and abundance of Calanus copepods, within and among 6 regions in Britain and Ireland from 1986 to 2004. Means and trends in winter SST differed among regions, with higher means and less pronounced increasing trends in western (Atlantic) regions than in eastern (North Sea) regions. A negative relationship between breeding productivity and winter SST in the previous year was found within 2 regions (East Scotland and Orkney), as well as in a cross-regional analysis. Results were inconclusive for Calanus abundance, with a positive relationship in East Scotland and negative in Orkney. These results demonstrate that although a single environmental driver (SST) is related to both within- and between-region variation in a key demographic parameter, regional heterogeneity in SST trends as well as the importance of other factors may lead to highly variable responses. Understanding this heterogeneity is critical for predicting long-term effects of climate change or other anthropogenic drivers on marine ecosystems.
Resumo:
The patterns of copepod species richness (S) and their relationship with phytoplankton productivity, temperature and environmental stability were investigated at climatological, seasonal and year-to-year time scales as well as scales along latitudinal and oceanic–neritic gradients using monthly time series of the Continuous Plankton Recorder (CPR) Survey collected in the North East Atlantic between 1958 and 2006. Time series analyses confirmed previously described geographic patterns. Equatorward and towards neritic environments, the climatological average of S increases and the variance explained by the seasonal cycle decreases. The bi-modal character of seasonality increases equatorward and the timing of the seasonal cycle takes place progressive earlier equatorward and towards neritic environments. In the long-term, the climatological average of S decreased significantly (p < 0.001) between 1958 and 2006 in the Bay of Biscay and North Iberian shelf at a rate of ca. 0.04 year−1, and increased at the same rate between 1991 and 2006 in the northernmost oceanic location. The climatological averages of S correlate positively with those of the index of seasonality of phytoplankton productivity (ratio between the minimum and maximum monthly values of surface chlorophyll) and sea surface temperature, and negatively with those of the proxy for environmental stability (monthly frequency of occurrence of daily averaged wind speed exceeding 10 m s−1). The seasonal cycles of S and phytoplankton productivity (surface chlorophyll as proxy) exhibit similar features in terms of shape, timing and explained variance, but the relationship between the climatological averages of both variables is non-significant. From year-to-year, the annual averages of S correlate negatively with those of phytoplankton productivity and positively with those of sea surface temperature along the latitudinal gradient, and negatively with those of environmental stability along the oceanic–neritic gradient. The annual anomalies of S (i.e. factoring out geographic variation) show a unimodal relationship with those of sea surface temperature and environmental stability, with S peaking at intermediate values of the anomalies of these variables. The results evidence the role of seasonality of phytoplankton productivity on the control of copepod species richness at seasonal and climatological scales, giving support to the species richness–productivity hypothesis. Although sea surface temperature (SST) is indeed a good predictor of richness along the latitudinal gradient, it is unable to predict the increase of richness form oceanic to neritic environments, thus lessening the generality of the species richness–energy hypothesis. Meteo-hydrographic disturbances (i.e. SST and wind speed anomalies as proxies), presumably through its role on mixed layer depth dynamics and turbulence and hence productivity, maximise local diversity when occurring at intermediate frequency and or intensity, thus providing support to the intermediate disturbance hypothesis on the control of copepod diversity.
Resumo:
Eutrophication, coupled with loss of herbivory due to habitat degradation and overharvesting, has increased the frequency and severity of macroalgal blooms worldwide. Macroalgal blooms interfere with human activities in coastal areas, and sometimes necessitate costly algal removal programs. They also have many detrimental effects on marine and estuarine ecosystems, including induction of hypoxia, release of toxic hydrogen sulfide into the sediments and atmosphere, and the loss of ecologically and economically important species. However, macroalgal blooms can also increase habitat complexity, provide organisms with food and shelter, and reduce other problems associated with eutrophication. These contrasting effects make their overall ecological impacts unclear. We conducted a systematic review and meta-analysis to estimate the overall effects of macroalgal blooms on several key measures of ecosystem structure and functioning in marine ecosystems. We also evaluated some of the ecological and methodological factors that might explain the highly variable effects observed in different studies. Averaged across all studies, macroalgal blooms had negative effects on the abundance and species richness of marine organisms, but blooms by different algal taxa had different consequences, ranging from strong negative to strong positive effects. Blooms' effects on species richness also depended on the habitat where they occurred, with the strongest negative effects seen in sandy or muddy subtidal habitats and in the rocky intertidal. Invertebrate communities also appeared to be particularly sensitive to blooms, suffering reductions in their abundance, species richness, and diversity. The total net primary productivity, gross primary productivity, and respiration of benthic ecosystems were higher during macroalgal blooms, but blooms had negative effects on the productivity and respiration of other organisms. These results suggest that, in addition to their direct social and economic costs, macroalgal blooms have ecological effects that may alter their capacity to deliver important ecosystem services.
Resumo:
Microalgae are generating considerable interest for third generation biodiesel production. However, appropriate strain selection is proving challenging due to the significant variation in cellular physiology, metabolic potential and genetics observed even amongst strains deemed morphologically similar. Six strains of Nannochloropsis from the CCAP culture collection were assessed for their lipid productivity and cellular structure, as proxies for oil production and harvesting ease, to assess their suitability as biodiesel production platforms. Differences in growth rate and lipid accumulation across the strains were observed. Nannochloropsis oculata strain 849/7 showed significantly reduced doubling time compared to Nannochloropsis salina strain 849/3, whilst Nannochloropsis oceanica 849/10 produced the highest lipid content. In addition the six strains could be differentiated into 3 distinct classes based on their cell wall thickness, which varied across the strains from 63 to 119 nm and which is independent of both species and geographical isolation location. The importance of these variations in ultrastructure and physiology for biodiesel production is discussed.
On the Front Line: frontal zones as priority at-sea conservation areas for mobile marine vertebrates
Resumo:
1.Identifying priority areas for marine vertebrate conservation is complex because species of conservation concern are highly mobile, inhabit dynamic habitats and are difficult to monitor. 2.Many marine vertebrates are known to associate with oceanographic fronts – physical interfaces at the transition between water masses – for foraging and migration, making them important candidate sites for conservation. Here, we review associations between marine vertebrates and fronts and how they vary with scale, regional oceanography and foraging ecology. 3.Accessibility, spatiotemporal predictability and relative productivity of front-associated foraging habitats are key aspects of their ecological importance. Predictable mesoscale (10s–100s km) regions of persistent frontal activity (‘frontal zones’) are particularly significant. 4.Frontal zones are hotspots of overlap between critical habitat and spatially explicit anthropogenic threats, such as the concentration of fisheries activity. As such, they represent tractable conservation units, in which to target measures for threat mitigation. 5.Front mapping via Earth observation (EO) remote sensing facilitates identification and monitoring of these hotspots of vulnerability. Seasonal or climatological products can locate biophysical hotspots, while near-real-time front mapping augments the suite of tools supporting spatially dynamic ocean management. 6.Synthesis and applications. Frontal zones are ecologically important for mobile marine vertebrates. We surmise that relative accessibility, predictability and productivity are key biophysical characteristics of ecologically significant frontal zones in contrasting oceanographic regions. Persistent frontal zones are potential priority conservation areas for multiple marine vertebrate taxa and are easily identifiable through front mapping via EO remote sensing. These insights are useful for marine spatial planning and marine biodiversity conservation, both within Exclusive Economic Zones and in the open oceans.
Resumo:
The Channel Catchments Cluster (3C) aims to capitalise on outputs from some of the recent projects funded through the INTERREG IVa France (Channel) England programme. The river catchment basins draining into the Channel region drain an area of 137,000km2 and support a human population of over 19M. Throughout history, these catchments, rivers and estuaries have been centres of habitation, developed through commerce and industry, providing transport links to hinterland areas. These catchments also provide drinking water and food through provision of agriculture, fisheries and aquaculture. In addition, many parts of the region are also economically important now for the tourism and leisure industries. Consequently, there is a need to manage the balance of these many and varied human activities within the catchments, rivers, estuaries and marine areas to ensure that they are maintained or restored to good environmental condition . This document highlights some of the recent work carried out by projects within the INTERREG IVa programme that provide tools and techniques to assist in the achievement of these goals.
Resumo:
Although the narrow stretch of water that separates England from France has seen both welcome (and occasionally less welcome) exchanges during the past thousand years, this physical challenge to the movement of people has certainly served to obstruct collaborative efforts that might establish a more sustainable economy in our part of Europe. Since 2009, the European Regional Development Fund (ERDF)-supported Interreg Programme France (Channel) England Region has actively supported efforts by organisations in France and England to work ever more closely together, to share good practice and to devise new ways to support sustainable development in the Region. The initiatives are certainly rooted in excellent research, but they have also been driven by the real needs of the Region and in all cases partners have worked to develop practical tools that can be readily applied in both France and England. The Channel Catchment Cluster (3C) builds on this growing tradition of cross-border cooperation to bring together the very best new knowledge from recent Anglo-French teamwork. The contents of this Compendium are the result of a wide variety of grass-roots initiatives that have benefitted enormously from a cross-border meeting of minds. The Cluster has brought together several of these cross-border teams to discuss their work and to share good practice in the dissemination and application of novel tools for environmental protection. This Compendium therefore not only presents a 'snapshot' of the wide variety of environmental protection and management tools that have emerged from the France (Channel) England Region, it also summarises where they stand on their 'pathway to impact'. There is clearly much more that can be achieved by future cross-border efforts in our Region, but I believe that this Compendium provides an excellent basis for future action. Professor Huw Taylor University of Brighton UK
Resumo:
The fisheries sector is crucial to the Bangladeshi economy and wellbeing, accounting for 4.4% of national Gross Domestic Product (GDP) and 22.8% of agriculture sector production, and supplying ca.60% of the national animal protein intake. Fish is vital to the 16 million Bangladeshis living near the coast, a number that has doubled since the 1980s. Here we develop and apply tools to project the long term productive capacity of Bangladesh marine fisheries under climate and fisheries management scenarios, based on downscaling a global climate model, using associated river flow and nutrient loading estimates, projecting high resolution changes in physical and biochemical ocean properties, and eventually projecting fish production and catch potential under different fishing mortality targets. We place particular interest on Hilsa shad (Tenualosa ilisha), which accounts for ca.11% of total catches, and Bombay duck (Harpadon nehereus), a low price fish that is the second highest catch in Bangladesh and is highly consumed by low income communities. It is concluded that the impacts of climate change, under greenhouse emissions scenario A1B, are likely to reduce the potential fish production in the Bangladesh Exclusive Economic Zone (EEZ) by less than 10%. However, these impacts are larger for the two target species. Under sustainable management practices we expect Hilsa shad catches to show a minor decline in potential catch by 2030 but a significant (25%) decline by 2060. However, if overexploitation is allowed catches are projected to fall much further, by almost 95% by 2060, compared to the Business as Usual scenario for the start of the 21st century. For Bombay duck, potential catches by 2060 under sustainable scenarios will produce a decline of less than 20% compared to current catches. The results demonstrate that management can mitigate or exacerbate the effects of climate change on ecosystem productivity.
Resumo:
We investigated 32 net primary productivity (NPP) models by assessing skills to reproduce integrated NPP in the Arctic Ocean. The models were provided with two sources each of surface chlorophyll-a concentration (chlorophyll), photosynthetically available radiation (PAR), sea surface temperature (SST), and mixed-layer depth (MLD). The models were most sensitive to uncertainties in surface chlorophyll, generally performing better with in situ chlorophyll than with satellite-derived values. They were much less sensitive to uncertainties in PAR, SST, and MLD, possibly due to relatively narrow ranges of input data and/or relatively little difference between input data sources. Regardless of type or complexity, most of the models were not able to fully reproduce the variability of in situ NPP, whereas some of them exhibited almost no bias (i.e., reproduced the mean of in situ NPP). The models performed relatively well in low-productivity seasons as well as in sea ice-covered/deep-water regions. Depth-resolved models correlated more with in situ NPP than other model types, but had a greater tendency to overestimate mean NPP whereas absorption-based models exhibited the lowest bias associated with weaker correlation. The models performed better when a subsurface chlorophyll-a maximum (SCM) was absent. As a group, the models overestimated mean NPP, however this was partly offset by some models underestimating NPP when a SCM was present. Our study suggests that NPP models need to be carefully tuned for the Arctic Ocean because most of the models performing relatively well were those that used Arctic-relevant parameters.