18 resultados para Productivity (employee)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eutrophication, coupled with loss of herbivory due to habitat degradation and overharvesting, has increased the frequency and severity of macroalgal blooms worldwide. Macroalgal blooms interfere with human activities in coastal areas, and sometimes necessitate costly algal removal programs. They also have many detrimental effects on marine and estuarine ecosystems, including induction of hypoxia, release of toxic hydrogen sulfide into the sediments and atmosphere, and the loss of ecologically and economically important species. However, macroalgal blooms can also increase habitat complexity, provide organisms with food and shelter, and reduce other problems associated with eutrophication. These contrasting effects make their overall ecological impacts unclear. We conducted a systematic review and meta-analysis to estimate the overall effects of macroalgal blooms on several key measures of ecosystem structure and functioning in marine ecosystems. We also evaluated some of the ecological and methodological factors that might explain the highly variable effects observed in different studies. Averaged across all studies, macroalgal blooms had negative effects on the abundance and species richness of marine organisms, but blooms by different algal taxa had different consequences, ranging from strong negative to strong positive effects. Blooms' effects on species richness also depended on the habitat where they occurred, with the strongest negative effects seen in sandy or muddy subtidal habitats and in the rocky intertidal. Invertebrate communities also appeared to be particularly sensitive to blooms, suffering reductions in their abundance, species richness, and diversity. The total net primary productivity, gross primary productivity, and respiration of benthic ecosystems were higher during macroalgal blooms, but blooms had negative effects on the productivity and respiration of other organisms. These results suggest that, in addition to their direct social and economic costs, macroalgal blooms have ecological effects that may alter their capacity to deliver important ecosystem services.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microalgae are generating considerable interest for third generation biodiesel production. However, appropriate strain selection is proving challenging due to the significant variation in cellular physiology, metabolic potential and genetics observed even amongst strains deemed morphologically similar. Six strains of Nannochloropsis from the CCAP culture collection were assessed for their lipid productivity and cellular structure, as proxies for oil production and harvesting ease, to assess their suitability as biodiesel production platforms. Differences in growth rate and lipid accumulation across the strains were observed. Nannochloropsis oculata strain 849/7 showed significantly reduced doubling time compared to Nannochloropsis salina strain 849/3, whilst Nannochloropsis oceanica 849/10 produced the highest lipid content. In addition the six strains could be differentiated into 3 distinct classes based on their cell wall thickness, which varied across the strains from 63 to 119 nm and which is independent of both species and geographical isolation location. The importance of these variations in ultrastructure and physiology for biodiesel production is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated 32 net primary productivity (NPP) models by assessing skills to reproduce integrated NPP in the Arctic Ocean. The models were provided with two sources each of surface chlorophyll-a concentration (chlorophyll), photosynthetically available radiation (PAR), sea surface temperature (SST), and mixed-layer depth (MLD). The models were most sensitive to uncertainties in surface chlorophyll, generally performing better with in situ chlorophyll than with satellite-derived values. They were much less sensitive to uncertainties in PAR, SST, and MLD, possibly due to relatively narrow ranges of input data and/or relatively little difference between input data sources. Regardless of type or complexity, most of the models were not able to fully reproduce the variability of in situ NPP, whereas some of them exhibited almost no bias (i.e., reproduced the mean of in situ NPP). The models performed relatively well in low-productivity seasons as well as in sea ice-covered/deep-water regions. Depth-resolved models correlated more with in situ NPP than other model types, but had a greater tendency to overestimate mean NPP whereas absorption-based models exhibited the lowest bias associated with weaker correlation. The models performed better when a subsurface chlorophyll-a maximum (SCM) was absent. As a group, the models overestimated mean NPP, however this was partly offset by some models underestimating NPP when a SCM was present. Our study suggests that NPP models need to be carefully tuned for the Arctic Ocean because most of the models performing relatively well were those that used Arctic-relevant parameters.