36 resultados para Preferred-habitat
Resumo:
Antarctic krill is a cold water species, an increasingly important fishery resource and a major prey item for many fish, birds and mammals in the Southern Ocean. The fishery and the summer foraging sites of many of these predators are concentrated between 0 degrees and 90 degrees W. Parts of this quadrant have experienced recent localised sea surface warming of up to 0.2 degrees C per decade, and projections suggest that further widespread warming of 0.27 degrees to 1.08 degrees C will occur by the late 21st century. We assessed the potential influence of this projected warming on Antarctic krill habitat with a statistical model that links growth to temperature and chlorophyll concentration. The results divide the quadrant into two zones: a band around the Antarctic Circumpolar Current in which habitat quality is particularly vulnerable to warming, and a southern area which is relatively insensitive. Our analysis suggests that the direct effects of warming could reduce the area of growth habitat by up to 20%. The reduction in growth habitat within the range of predators, such as Antarctic fur seals, that forage from breeding sites on South Georgia could be up to 55%, and the habitat's ability to support Antarctic krill biomass production within this range could be reduced by up to 68%. Sensitivity analysis suggests that the effects of a 50% change in summer chlorophyll concentration could be more significant than the direct effects of warming. A reduction in primary production could lead to further habitat degradation but, even if chlorophyll increased by 50%, projected warming would still cause some degradation of the habitat accessible to predators. While there is considerable uncertainty in these projections, they suggest that future climate change could have a significant negative effect on Antarctic krill growth habitat and, consequently, on Southern Ocean biodiversity and ecosystem services.
Resumo:
Nursery areas for juvenile fishes are often important for determining recruitment in marine populations by providing habitats that can maximize growth and thereby minimize mortality. Pacific ocean perch (POP, Sebastes alutus) have an extended juvenile period where they inhabit rocky nursery habitats. We examined POP nursery areas to link growth potential to recruitment. Juvenile POP were captured from nursery areas in 2004 and 2008, and estimated growth rates ranged from −0.19 to 0.60 g day−1 based on differences in size between June and August. Predicted growth rates from a bioenergetics model ranged from 0.05 to 0.49 g day−1 and were not significantly different than observed. Substrate preferences and the distribution of their preferred habitats were utilized to predict the extent of juvenile POP nursery habitat in the Gulf of Alaska. Based on densities of fish observed on underwater video transects and the spatial extent of nursery areas, we predicted 278 and 290 million juvenile POP were produced in 2004 and 2008. Growth potential for juvenile POP was reconstructed using the bioenergetics model, spring zooplankton bloom timing and duration and bottom water temperature for 1982–2008. When a single outlying recruitment year in 1986 was removed, growth potential experienced by juvenile POP in nursery areas was significantly correlated to the recruitment time-series from the stock assessment, explaining ∼30% of the variability. This research highlights the potential to predict recruitment using habitat-based methods and provides a potential mechanism for explaining some of the POP recruitment variability observed for this population.
Resumo:
The oceanographic drivers of marine vertebrate habitat use are poorly understood yet fundamental to our knowledge of marine ecosystem functioning. Here, we use composite front mapping and high-resolution GPS tracking to determine the significance of mesoscale oceanographic fronts as physical drivers of foraging habitat selection in northern gannets Morus bassanus. We tracked 66 breeding gannets from a Celtic Sea colony over 2 years and used residence time to identify area-restricted search (ARS) behaviour. Composite front maps identified thermal and chlorophyll-a mesoscale fronts at two different temporal scales—(i) contemporaneous fronts and (ii) seasonally persistent frontal zones. Using generalized additive models (GAMs), with generalized estimating equations (GEE-GAMs) to account for serial autocorrelation in tracking data, we found that gannets do not adjust their behaviour in response to contemporaneous fronts. However, ARS was more likely to occur within spatially predictable, seasonally persistent frontal zones (GAMs). Our results provide proof of concept that composite front mapping is a useful tool for studying the influence of oceanographic features on animal movements. Moreover, we highlight that frontal persistence is a crucial element of the formation of pelagic foraging hotspots for mobile marine vertebrates.
Resumo:
Understanding the mechanisms linking oceanographic processes and marine vertebrate habitat use is critical to effective management of populations of conservation concern. The basking shark Cetorhinus maximus has been shown to associate with oceanographic fronts – physical interfaces at the transitions between water masses – to exploit foraging opportunities resulting from aggregation of zooplankton. However, the scale, significance and variability of these observed associations have not yet been established. Here, we quantify the influence of mesoscale (10s – 100s km) frontal activity on habitat use over timescales of weeks to months. We use animal-mounted archival tracking with composite front mapping via Earth Observation (EO) remote sensing to provide an oceanographic context to individual shark movements. We investigate levels of association with fronts occurring over two spatio-temporal scales, (i) broad-scale seasonally persistent frontal zones and (ii) contemporaneous mesoscale thermal and chl-a fronts. Using random walk simulations and logistic regression within an iterative generalised linear mixed modelling (GLMM) framework, we find that seasonal front frequency is a significant predictor of shark presence. Temporally-matched oceanographic metrics also indicate that sharks demonstrate a preference for productive regions, and associate with contemporaneous thermal and chl-a fronts more frequently than could be expected at random. Moreover, we highlight the importance of cross-frontal temperature change and persistence, which appear to interact to affect the degree of prey aggregation along thermal fronts. These insights have clear implications for understanding the preferred habitats of basking sharks in the context of anthropogenic threat management and marine spatial planning in the northeast Atlantic.
Resumo:
Global increase in sea temperatures has been suggested to facilitate the incoming and spread of tropical invaders. The increasing success of these species may be related to their higher physiological performance compared with indigenous ones. Here, we determined the effect of temperature on the aerobic metabolic scope (MS) of two herbivorous fish species that occupy a similar ecological niche in the Mediterranean Sea: the native salema (Sarpa salpa) and the invasive marbled spinefoot (Siganus rivulatus). Our results demonstrate a large difference in the optimal temperature for aerobic scope between the salema (21.8°C) and the marbled spinefoot (29.1°C), highlighting the importance of temperature in determining the energy availability and, potentially, the distribution patterns of the two species. A modelling approach based on a present-day projection and a future scenario for oceanographic conditions was used to make predictions about the thermal habitat suitability (THS, an index based on the relationship between MS and temperature) of the two species, both at the basin level (the whole Mediterranean Sea) and at the regional level (the Sicilian Channel, a key area for the inflow of invasive species from the Eastern to the Western Mediterranean Sea). For the present-day projection, our basin-scale model shows higher THS of the marbled spinefoot than the salema in the Eastern compared with the Western Mediterranean Sea. However, by 2050, the THS of the marbled spinefoot is predicted to increase throughout the whole Mediterranean Sea, causing its westward expansion. Nevertheless, the regional-scale model suggests that the future thermal conditions of Western Sicily will remain relatively unsuitable for the invasive species and could act as a barrier for its spread westward. We suggest that metabolic scope can be used as a tool to evaluate the potential invasiveness of alien species and the resilience to global warming of native species.
Resumo:
Understanding the mechanisms linking oceanographic processes and marine vertebrate habitat use is critical to effective management of populations of conservation concern. The basking shark Cetorhinus maximus has been shown to associate with oceanographic fronts – physical interfaces at the transitions between water masses – to exploit foraging opportunities resulting from aggregation of zooplankton. However, the scale, significance and variability of these observed associations have not yet been established. Here, we quantify the influence of mesoscale (10s – 100s km) frontal activity on habitat use over timescales of weeks to months. We use animal-mounted archival tracking with composite front mapping via Earth Observation (EO) remote sensing to provide an oceanographic context to individual shark movements. We investigate levels of association with fronts occurring over two spatio-temporal scales, (i) broad-scale seasonally persistent frontal zones and (ii) contemporaneous mesoscale thermal and chl-a fronts. Using random walk simulations and logistic regression within an iterative generalised linear mixed modelling (GLMM) framework, we find that seasonal front frequency is a significant predictor of shark presence. Temporally-matched oceanographic metrics also indicate that sharks demonstrate a preference for productive regions, and associate with contemporaneous thermal and chl-a fronts more frequently than could be expected at random. Moreover, we highlight the importance of cross-frontal temperature change and persistence, which appear to interact to affect the degree of prey aggregation along thermal fronts. These insights have clear implications for understanding the preferred habitats of basking sharks in the context of anthropogenic threat management and marine spatial planning in the northeast Atlantic.
Resumo:
1. The effect of habitat fragmentation was investigated in two adjacent, yet separate, intertidal Zostera marina beds in the Salcombe Estuary, Devon, UK. The seagrass bed on the west bank comprised a continuous meadow of ca. 2.3 ha, whilst the bed on the east bank of the estuary was fragmented into patches of 6–9 m2.2. Three 10 cm diameter core samples for infaunal macroinvertebrates were taken from three stations within each bed. No significant difference was found in univariate community parameters between beds, or in measured seagrass parameters. However, multivariate analysis revealed a significant difference in community composition, due mainly to small changes in species abundance rather than differences in the species present.3. The species contributing most to the dissimilarity between the two communities were polychaetes generally associated with unvegetated habitats (e.g. Magelona mirabilis) and found to be more common in the fragmented bed.4. A significant difference in median grain size and sorting coefficient was recorded between the two beds, and median grain size was found to be the variable best explaining multivariate community patterns.5. The results of the study provide evidence for the effects of habitat fragmentation on the communities associated with seagrass beds, habitats which are of high conservation importance. As the infaunal community is perhaps intuitively the component least likely to be affected by fragmentation at the scale observed, the significant difference in community composition recorded has consequences for more sensitive and high-profile parts of the biota (e.g. fish), and thus for the conservation of seagrass habitats and their associated communities.